

Milk - What's in it for you?

Jana Kraft, Ph.D.

Department of Animal Science, University of Vermont

VDIA/VFD Fall Conference

September 16, 2014

Composition of cows' milk

Milk is a naturally nutrient-dense food

→ Supply a high concentration of many nutrients in relation to its energy (caloric) value

Nutrient	%
Energy	9.1
Protein	19.4
Fat	11.8
Carbohydrate	4.5
Calcium	72.2
Phosphorus	32.7
Vitamin A	22.1
Vitamin B12	20.3

Nutrient contribution of dairy to the U.S. food supply (per capita)

Source: USDA, Economic Research Service

Milk's calories depend on its fat content

Fat-free (Skim, Nonfat) < 0.5% fat

Low-Fat1% fat

Reduced-Fat2% fat

• Whole **3.25% fat**

102 calories

122 calories

146 calories

Vitamins in milk

- Fat-Soluble Vitamins
 - Vitamins A, (D), E, and K

- Water-Soluble Vitamins
 - Vitamins ${\bf B_1}$, ${\bf B_2}$, ${\bf B_6}$, ${\bf B_{12}}$, C, pantothenic acid, macin, biotin, and folic acid

Milk contains appreciable amounts of B vitamins

26% daily value

22% daily value

15% daily value

Milk is an important source of minerals

 Contains calcium, phosphorus, selenium, potassium, zinc, and magnesium

Milk Protein

Cow's milk protein is a heterogeneous mixture of high-quality protein

→ Provides 16% of the daily value

High quality source of amino acids

	Protein	Content (%)
	Caseins	80
	α _{s1} -casein	32
	α _{s2} -casein	8
	β-casein	32
	к-casein	8
•	Whey proteins	20
	β-lactoglobulin	12
	α-lactalbumin	4
	Immunoglobulins	3
	Serum albumin	1

Milk is a source of "high biological value" protein

→ Contains <u>all nine essential amino acids</u> in proportions resembling amino acid requirements

→ Used as a standard reference protein to evaluate the nutritive value of other food proteins

Individual milk proteins have been shown to exhibit a wide range of beneficial functions

- Glycemic control and weight management (Anderson et al. Nestle *Nutr Workshop Ser Pediatr Program*, 2011)
- Food intake regulation and satiety (Luhovyy et al., J Am Coll Nutr, 2007)
- Muscle metabolism (Tipton et al., Med Sci Sports Exerc, 2004)
- Hypertension (Jauhiainen & Korpela, J Nutr, 2007)
- Reduction of dental caries (Aimutis, J Nutr, 2004)

The A2 milk case

- Commercialized by A2 Corporation
- Available in New-Zealand, Australia, and UK
- Contains only the A2 type of β-casein but no A1 type of β-casein

Claim

Milk containing A1 β -casein proteins is harmful to human health whereas milk containing only A2 β -casein is better for health

The A2 milk case

A1 type and A2 type of β-casein differ by one amino acid

- Difference originated as a mutation that occurred ~5,000-10,000 years ago
- Prevalence of the A1 and A2 β-casein protein varies between herds of cattle and countries

Studies in cells found that A1 and A2 \(\beta\)-casein proteins are processed differently and thus posses different health effects

 "BCM7" has been suggested to contribute to an increased risk for certain diseases such as type 1 diabetes, heart disease, schizophrenia, and autism

A2 company's claims were not confirmed by European Food Safety Authority

"Based on the present review of available scientific literature, a cause-effect relationship between BCM7 and etiology or cause of any suggested non-communicable diseases cannot be established."

EFSA Scientific review, 2009

http://www.efsa.europa.eu/en/efsajournal/doc/231r.pdf

→ Advertising/health claims by A2 corporation are misleading

Milk allergy is a food allergy

- → An abnormal response by the body's immune system to the protein found in dairy
- Most common food allergy in early childhood (present in about 2 - 5% of children)
 - → 85 90% of affected children lose clinical reactivity to milk once they surpass 3 years of age
- Prevalence in adults is between 0.1% and 0.5%

Milk allergy should not be confused with lactose intolerance

Milk Carbohydrate

Lactose is the primary carbohydrate in milk

Milk contains ~4.8% carbohydrate that is predominately lactose

In the human body lactose is an excellent source of energy

Lactose needs to be broken down before the body can use it

Lactose intolerance is the impaired ability to digest lactose

Lactose intolerance is not a disease, but rather the normal physiologic pattern

- produces lactase
- successfully digests lactose provided by human milk

after weaning

Toddler

 a genetically programmed decrease in lactase occurs in most children worldwide

Only 35% of the human population can digest lactose

Ethnic Group	% with Lactose Intolerance
Northern Europeans	2-15
American Whites	6-22
Central Europeans	9-23
Indians (Indian Subcontinent)	
Northern	20-30
Southern	60-70
Hispanics	50-80
Ashkenazi Jew	60-80
Blacks	60-80
American Indians	80-100
Other Asians	95-100

Adapted from: Schaafsma, Int Dairy J 18, 2008; Harrington & Mayberry, Int J Clin Pract, 2008

Persistence of significant lactase activity into adult life in European populations is a mutation

- ▶ Due to the introduction of a dairy-based culture in some populations 10,000 years ago
- ▶ Mutation responsible for that may be between 2,000 and 12,000 years old (estimates vary)

Milk Lipids (Fat)

Commercial whole milk is 97 % fat free

- → Milk fat is the most variable component of milk
- → **Fat content varies** from 3.0 to 7.0% (typical range: 3.5 to 4.7%)
- → High nutritive and technological value

Milk fat is composed of a complex mixture of lipids

Lipid class	Amount (%, w/w)
Triglycerides (TAG)	98.3
Diglycerides (DAG)	0.3
Monoglycerides (MAG)	0.03
Free fatty acids (FFA)	0.1
Phospholipids	0.8
Sterols	0.3
Carotenoids	trace
Fat-soluble vitamins	trace
Flavor compounds	trace

→ Triglycerides are the major type of lipid in milk fat

Walstra & Jenness (1984)

Milk fat is composed of a complex mixture of lipids

- > 400 fatty acids have been identified in milk fat (C4:0 to C26:0)
- 15 20 fatty acids make up 90% of the milk fat
- Majority is present in extremely small quantities (<0.01%)

Fatty acid classes in milk fat

Saturated fatty acids (SFA)

- **55 75%** of total fatty acids
- No double bond
- Related to some health concerns

Milk and dairy products are the greatest single source of saturated fatty acids in the U.S. diet

[National Health & Nutrition Examination Survey (NHANES) 2003 -2006]

Fatty acid classes in milk fat

Saturated fatty acids (SFA)

- **55 75%** of total fatty acids
- No double bond
- Related to some health concerns

Monounsaturated fatty acids (MUFA)

- 20 33% of total fatty acids
- One double bond
- Regarded as healthy

Polyunsaturated fatty acids (PUFA)

- 3 6% of total fatty acids
- More than one double bond
- Regarded as healthy

Saturated vs. unsaturated fats

Saturated fats

- No double bonds
- Straight structure

Unsaturated fats

Making fats solid at room temperature

Monounsaturated fats

- 1 double bond
- Causes bend structure
- Making a fat liquid

Polyunsaturated fats

• >1 double bond

Fatty acids in milk fat

Fatty Acid	Mean	Range
	— g per 100g fatty acids —	
Saturated fats	70.1	55.4 - 80.1
12:0 (Lauric acid)	2.8	0.4 - 4.1
14:0 (Myristic acid)	11.1	9.1 - 11.9
16:0 (Palmitic acid)	27.9	23.6 - 31.4
18:0 (Stearic acid, SA)	12.2	10.4 - 14.6
Other	13.1	11.2 - 18.2
Monounsaturated fats	25.4	19.6 - 26.6
18:1 n-9 (Oleic acid, OA)	19.2	17.6 - 22.2
18:1 n-7 (Vaccenic acid, VA)	2.2	0.6 - 4.2
Other	6.2	0.9 - 1.4
Polyunsaturated fats	4.5	3.0 - 6.0
18:2 n-6 (Linoleic acid, LA, omega-6)	1.4	1.2 - 1.7
18:3 n-3 (α-linolenic acid, ALA, omega-3)	1.0	0.9 - 1.2
Conjugated linoleic acids (CLA)	1.1	0.7 - 1.8
20:5 n-3 (Eicosapentaenoic acid, EPA)	0.1	0.1 - 0.7
22:5 n-3 (Docosapentaenoic acid, DPA)	0.1	0.1 - 0.2
Other	0.8	0.8 - 1.2

Fatty acids in milk fat originate from different sources

Fatty acid	Mean	Range	
	— g per 100g fatty acids —		
MUFA	25.4	19.6 - 32.6	
PUFA	4.5	3.1-6.0	
SFA	70.1	55.4-80.1	
4:0	3.9	3.1 - 4.4	
6:0	2.5	1.8 - 2.7	
8:0	1.5	1.0 - 1.7	
10:0	3.2	2.2 - 3.8	
12:0	3.6	2.6 - 4.2	
14:0	11.1	9.1 - 11.9	
14:1 (n-5)	0.8	0.5 - 1.1	
16:0	27.9	23.6 - 31.4	
16:1 (n-7)	1.5	1.4 - 2.0	
18:0	12.2	10.4 - 14.6	
18:1 cis	17.2	14.9 - 22.0	
18:1 trans	3.9	2.8 - 7.5	
18:2 (n-6)	\ <u>1</u> .4	1.2 - 1.7	
18:2 conjugated	1.1	0.7 - 1.8	
18:3 (n-3)	1.0	0.9 - 1.2	
Minor fatty acids	6.0	4.8 - 7.5	

- De novo synthesis (ca. 40%) within the mammary gland (synthesis of new molecules of fatty acids from precursors)
- Blood lipids (ca. 60%) dietary, microbial, and adipose fatty acids absorbed from the blood stream

Unsaturated fatty acids from the feed are biohydrogenated in the rumen of the cow

Milk fat contains many bioactive fatty acids with beneficial health effects

→ Functional (bioactive) fatty acids

- Conjugated linoleic acids (CLA)
- Short-/medium-chain SFA (4:0 10:0)
- Oleic acid (*c*9 18:1)
- n-3 (omega-3) fatty acids

Exhibit beneficial health effects

- Anticarcinogenic
- Bacteriostatic/bactericidal
- Cardiovascular benefits
- Essential for growth and development

The saturated fat issue

Americans are switching to lower fat milks

Source: USDA, Economic Research Service

Public health policy continues to recommend reduction in saturated fat intake

Dietary Guidelines for Americans

- Consume less than 10 percent of total daily calories from saturated fatty acids
- Choose fat-free or low-fat milk and milk products

American Heart Association (AHA)

- Limit the amount of saturated fatty acids to less than 7 percent of total daily calories
- Select fat-free (skim), 1%-fat, and reduced fat (2%) dairy products

Ancel Keys originated "Diet-Heart Hypothesis" that fat was the cause of heart disease

Keys, J Mt Sinai Hosp, 1953

Ancel Keys originated "Diet-Heart hypothesis" that fat was the cause of heart disease

Ann Intern Med. 2014;160:398-406.

Annals of Internal Medicine

Association of Dietary, Circulating, and Supplement Fatty Acids With Coronary Risk

A Systematic Review and Meta-analysis

Rajiv Chowdhury, MD, PhD; Samantha Warnakula, MPhil*; Setor Kunutsor, MD, MSt*; Francesca Crowe, PhD; Heather A. Ward, PhD; Laura Johnson, PhD; Oscar H. Franco, MD, PhD; Adam S. Butterworth, PhD; Nita G. Forouhi, MRCP, PhD; Simon G. Thompson, FMedSci; Kay-Tee Khaw, FMedSci; Dariush Mozaffarian, MD, DrPH; John Danesh, FRCP*; and Emanuele Di Angelantonio, MD, PhD*

Dietary Fatty Acid Intake	Studles, n	Participants, n	Events, n		RR (95% CI)*
Total saturated fatty acids	20	283 963	10 518	•	1.02 (0.97–1.07
Total monounsaturated fatty acids	9	143 985	6020	-	0.99 (0.89–1.09
Total ϖ -3 fatty acids					
α -Linolenic	7	154 338	6615		0.99 (0.86-1.14
Total long-chain ₪-3	16	422 071	8313	-	0.93 (0.84-1.02
Total ₁₀ -6 fatty acids	6	169 935	5884	-	1.01 (0.96–1.07
Total trans fatty acids	5	155 270	4662	-	1.16 (1.06–1.27

Conclusion: Current evidence does not clearly support cardiovascular guidelines that encourage high consumption of polyunsaturated fatty acids and low consumption of total saturated fats.

Baseline Dietary Fatty Acid Intake

▶ Saturated fats have been under constant scrutiny for their role in the development of chronic diseases

▶ Health authorities/agencies promote fat-reduced or fat-free dairy products of as part of a healthy diet

Milk fat has been suffering from a negative nutritional image

Research at UVM

→ Examining the effects of consuming a diet comprising of milk fat on metabolic health markers

Funding

- New England Dairy Promotion Board
- Vermont Dairy Promotion Council
- ▶ Dairy Research Institute
- ▶ The University of Vermont (Clinical Research Center)

Research Team

C. Lawrence Kien, M.D., Ph.D.

College of Medicine

Helen Walsh, Ph.D.

Project Coordinator/ Postdoctoral Fellow

Emily Tarleton

Bionutrition Manager, Clinical Research Center

Andre Wright, Ph.D.

Animal Science
Department

Hira Haq

Junior in Biochemistry

Project rationale

Evidence associating the consumption of saturated fat related to full-fat milk and dairy products with an increased risk of Metabolic Syndrome is insufficient and inconclusive.

- → Milk fat contains bioactive fatty acids
 - Oleic acid
 - Short-/medium-chain fatty acids
 - Conjugated linoleic acids (CLA)
 - Branched-chain fatty acids
 - Omega-3 fatty acids
 - Vaccenic acid

Overview of study design

Study population

- 10 female and 10 male participants (total: 20)
- Normal and overweight (BMI: 18.5 and 29.9 kg/m²)
- Age 18-40

* Plus control fat

Standardized diet during the study

Standardized diet during the study

Study endpoints (outcome measurements)

Primary endpoints

→ Blood glucose and insulin levels

→ Blood triglyceride and cholesterol levels

Explanatory endpoints

 \rightarrow Inflammatory markers (TNF- α , IL-2, IL-6, hsCRP)

→ Gut microbes

Significance of the project

- Develop scientific evidence on the neutral or beneficial effects of milk fat on metabolic health markers
 - → Consumption of 3 servings of whole dairy product will positively modulate metabolic parameters vital to human health as a result of the milk fat's bioactive fatty acids
 - Ensuring the public perception (increased appeal and acceptability) and sale of fat-containing dairy products
 - → Lead to revised dietary recommendations (e.g., Dietary Guidelines for Americans)
 - Provide dairy industry with an opportunity to promote the role of milk fat as part of a healthy and balanced diet

Take Home Message

- Milk should be promoted for its significant contribution to our nutrient supply and it's benefits on human health!
- Milk fat is perceived as unhealthy but there is little or no evidence that milk has adverse health effects
- Education of the public, nutritionists, dieticians, and physicians is essential!