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Abstract: In this introduction to the following series of papers on Bayesian belief networks (BBNs) we briefly summa- 
rize BBNs, review their application in ecology and natural resource management, and provide an overview of the 
papers in this section. We suggest that BBNs are useful tools for representing expert knowledge of an ecosystem, eval- 
uating potential effects of alternative management decisions, and communicating with nonexperts about making natural 
resource management decisions. BBNs can be used effectively to represent uncertainty in understanding and variability 
in ecosystem response, and the influence of uncertainty and variability on costs and benefits assigned to model out- 
comes or decisions associated with natural resource management. BBN tools also lend themselves well to an adaptive- 
management framework by posing testable management hypotheses and incorporating new knowledge to evaluate exist- 
ing management guidelines. 

Resum6 : Dans cette introduction B la serie d'articles qui suivent sur les rCseaux bayksiens d'appreciation (RBA), nous 
donnons un bref aperFu des RBA, revisons leur application en tcologie et en gestion des ressources naturelles et pr6- 
sentons une vue d'ensemble des articles dans cette section. Nous croyons que les RBA sont des outils utiles pour re- 
presenter I'expertise existante au sujet d'un kosystkme, tvaluer les effets potentiels de dkisions alternatives de gestion 
et communiquer aux profanes les enjeux lies aux decisions associkes h la gestion des ressources naturelles. Les RBA 
peuvent etre utilises efficacement pour reprksenter la part d'incertitude dans notre comprChension et la variabilitk dans 
la r6ponse des Ccosystkmes ainsi que I'influence de I'incertitude et de la variabilitk sur les coats et les benefices assi- 
gnis aux rksultats des modMes ou sur les dkisions associks h la gestion des ressources naturelles. Les outils que 
constituent les RBA se preterit bien Bgalement A un cadre de gestion adaptative en formulant des hypothbes de gestion 
qui peuvent etre testtes et en incorporant de nouvelles connaissances pour evaluer les directives actuelles concernant la 
gestion. 

[Traduit par la Redaction] 

Introduction fluence of alternative management activities on key ecologi- 

Bayesian belief networks (BBNs) are models that graphi- 
cally and probabilistically represent correlative and causal 
relationships among variables (Cain 2001; Neopolitan 2003). 
In ecological modelling, BBNs are particularly useful for 
rapid scoping and intuitive presentation of ecological rela- 
tionships. When applied to natural resource management 
(hereinafter resource management), BBNs can depict the in- 

cal predictor variables and-thence on ecological i n d  other 
response variables, and thereby help the manager choose the 
best course of action. In this paper we summarize concepts 
of BBNs, review their use in ecological modelling and re- 
source management, and introduce the papers in this series. 

BBNs have been used in ecological modelling to represent 
species-habitat relationships and population viability of ter- 
restrial and aquatic vertebrates (Marcot 2007). For example, 
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BBNs have been used to model responses of birds and m&- 
mals to habitat patterns (e.g., Wisdom et al. 2002; Rowland 
et al. 2003) and to model population viability of salmonids 
(Lee and Rieman 1997). In resource management, BBNs 
have been used in a broader decision-support framework 
(conceptual or computer-based tools that collectively facili- 
tate the decision-making process; Cain 2001) to analyze ef- 
fens on wildlife from land-planning alternatives by the 
USDA Forest Service and USDI Bureau of Land Manage- 
ment in their Interior Columbia Basin Ecosystem Manage- 
ment Project in the Pacific Northwest of the United States 
(Marcot et al. 2001; Raphael et al. 2001; Rieman et al. 
2001). BBNs also have been used to predict and aid water- 
quality management (Reckhow 1999) and water-resource 
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planning (Bromley et al. 2005), to aid fisheries management 
of Baltic cod (Gadus morhua callarias L.) (Kuikka et al. 
1999), and to model meta-assessments of fish stocks 
(Hamrnond and Ellis 2002). Cain et al. (1999) emphasized 
the utility of BBNs to facilitate stakeholder participation in 
resource management planning and decision processes. This 
series of papers represents work completed by a team of Ca- 
nadian and US ecological researchers and resource manag- 
ers. In this series we introduce BBNs, provide guidelines for 
their development, and give examples of recent applications 
to address current issues in ecology and resource manage- 
ment in British Columbia. 

Our objective in writing this series was to promote a 
broader understanding, awareness, and acceptance of BBNs 
as one of the tools that researchers and managers, committed 
to making more informed and disclosed decisions about 
resource management, should place in their toolbox, with 
appropriate caveats. BBNs are intuitive tools for (i) repre- 
senting and combining empirical data with experts' under- 
standing of ecological systems, (ii) graphically expressing 
complex relationships and problems in resource manage- 
ment, (iii) addressing, in a structured way, uncertainties that 
plague attempts to solve these problems, (iv) structuring and 
evaluating alternative decisions within a context of risk as- 
sessment that helps identify best decisions (Marcot 1998), 
and (v) fostering communication among ecologists, decision- 
makers, and stakeholders who may lack formal training in 
the underlying scientific disciplines (Cain 2001). Although 
BBNs do not replace field studies and experiments (Marcot 
et al. 2001), they can well complement other ecological 
modelling approaches such as simulation modelling and 
population-viability analysis (Lee and Rieman 1997; 
Steventon et al. 2006). 

Why Bayesian belief networks? 

A BBN is a graphical network of nodes linked by proba- 
bilities (Fig. 1). Nodes can represent constants, discrete or 
continuous variables, and continuous functions, and how 
management decisions affect other variables. Nodes are 
comprised of states that are independent, mutually exclusive, 
and exhaustive propositions (Olson et al. 1990b; Cain 2001) 
about the values or conditions that the variable represented 
by the node can assume. Nodes are linked with arrows to 
represent direct correlations or causal influences (Olson et 
al. 1990b; Cain 2001). Nodes with no incoming arrows are 
input parent nodes; nodes with both incoming and outgoing 
arrows are summary child nodes; and nodes with no outgo- 
ing arrows are output child nodes. Underlying each node is a 
modeller-defined table that specifies the unconditional 
(prior) probability of each state for input nodes, or the con- 
ditional probability of each state for child nodes (nodes rep- 
resenting constants, functions, or decisions generally have 
no probability tables). The final "posterior probabilities" of 
states or values of the output nodes are calculated in the net- 
work using standard Bayesian learning statistics 
(Spiegelhalter et al. 1993). The computationally effective al- 
gorithms in commercial BBN modelling shells permit rapid 
updating of probabilities throughout the network as evidence 
becomes available by which to select the states of the input 

nodes. BBNs built from most such modelling shells are 
highly interactive. 

BBNs are somewhat similar to decision trees (e.g., 
VanderWerf et al. 2006) and other decision models that de- 
note effects of alternative decision pathways or states of na- 
ture on probabilities of outcomes having expected utilities 
(values assigned to model outcomes that reflect socio- 
economic, political, legal, and management interests). How- 
ever, BBNs have several distinct advantages. Principal 
among these are their graphical construction, which shows 
relationships among variables more clearly (Cain 2001) and 
facilitates the use of expert knowledge (Kuikka et al. 1999) 
and their use of Bayesian statistics to calculate probabilities 
of outcome states, whereas decision trees reveal more detail 
about chains of events initiated by decisions (Cain 2001) and 
use joint probability distributions. The Bayesian approach is 
far more flexible in that it can draw from both empirical data 
and expert judgment as a basis for the model structure and 
probability tables (Heckerman et al. 1994; Kuikka et al. 
1999), account for prior knowledge and missing data, and 
use new data to update and refine the model structure and 
underlying probability tables, which other, more traditional 
modelling approaches such as decision-tree analysis gener- 
ally cannot do. 

The interactive and graphical representation of BBNs, and 
the ease with which they can be created and amended, per- 
mit more effective communication of cumulative effects and 
outcomes of alternative conditions and decisions than do 
more static models such as decision trees and other tradi- 
tional statistical approaches like classification or regression 
trees. BBNs also are readily understood by nonmodellers 
and, if properly constructed, can reveal more underlying de- 
tail of how the system works than do fixed decision analyses 
(Cain 2001). 

BBNs can be used for both data-rich and data-poor appli- 
cations; however, in the latter case caution is warranted with 
BBNs (Marcot et al. 2006) as with other types of models 
(e.g., Beissinger and Westphal 1998). The use of expert 
judgment necessitates documenting, defending, and, where 
possible, validating the basis for the model structure and 
conditional probabilities. BBNs based mainly on expert ex- 
perience should be used to generate testable hypotheses and 
should follow a rigorous procedure for developing, testing, 
and updating the model, such as that suggested by Marcot et 
al. (2006). 

By representing different potential outcomes of manage- 
ment options with probabilities, managers can use BBNs to 
rank management options according to decisions that will 
most likely lead to desired outcomes. This can be done in 
BBNs by calculating expected values of the utility of alter- 
native options shown in decision nodes (e.g., Nyberg et al. 
2006), and by sensitivity analysis of part of or an entire 
BBN model. Most commercial BBN modelling shells (see 
Marcot et al. 2006; Nyberg et al. 2006) support sensitivity 
analysis, which allows examination of how robust a ranked 
set of management options is to varying parameter values 
within models or assumptions about the model structure 
(Peterman and Peters 1998) and can be useful in identifying 
key uncertainties and guiding decision-making under uncer- 
tainty. Some management options may be more robust to 
particular uncertainties or more effective at reducing the im- 
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Fig. 1. Example of a Bayesian belief network model predicting how decisions about timber management and road development can af- 
fect habitat quality for the American marten (Martes umericana (Turton)) within a sub-basin in the interior western USA and how op- 
erational costs and social values associated with marten population densities can influence the timber-management decision. Input 
nodes A-E represent habitat conditions where node A is the density of marten mature-forest habitat in the sub-basin; nodes B-E are 
directly affected by timber-management and road-development decision nodes M1 and M2. Intermediate nodes F-H are calculated from 
underlying conditional-probability tables. Output node I shows the calculated posterior probabilities of marten population density. Util- 
ity nodes U-X represent various costs of management decisions and social values of marten population levels. Horizontal bars and val- 
ues within nodes are probabilities of states of each variable; values in the decision nodes are expected values of costs, given the 
probability structure of the model and utility values; and values below nodes A, F, and I are expected values of habitat-quality or pop- 
ulation indices (-1, 0, and 1 represent zero, low, and high densities, respectively) * 1 SD (presuming a Gaussian error distribution). 
The basic model is based on Raphael et al. (2001), with added hypothetical management and utility nodes. 

pacts of potential future uncertainties (e.g., environmental 
uncertainties estimated through simulation modelling) than 
others (Kuikka et al. 1999). Additionally, sensitivity analy- 
ses can be used to help build the model correctly (Marcot et 
al. 2006), aid in identifying restoration and research priori- 
ties (Nyberg et al. 2006), and help resolve conflicts about 
management objectives or beliefs about ecosystem function 
(Peterman and Peters 1998). Marcot et al. (2006) provide 
formulae and recommendations for sensitivity-analysis cal- 
culations and present some general insights into how BBN 
structure affects model sensitivity. 

In addition to inferring the probabilities of alternative 
model outcomes for a given set of causal conditions or 
"states" of the key ecological predictor variables (i.e., for- 
ward propagation of conditional probabilities through the 
model structure), BBNs also can be used to infer the most 
likely set of causal conditions for a given outcome by solv- 
ing the model's conditional probabilities backwards through 
the model structure. This is a most useful feature of BBNs, 
one that many other model structures such as decision trees 
cannot provide. This examination of likelihoods can be a 
useful approach to informing decision-makers of the combi- 
nations of variable states across the predictor variables that 
can be expected to produce the desired outcome. Marcot et 
al. (2006) further discuss probabilities and likelihoods in the 
context of BBNs. 

Models in ecological research and resource 
management 

Refining our understanding, quantifying relationships, 
generating inferences about the relationships between eco- 
logical predictor variables and response variables, and fore- 
casting potential effects of management actions are primary 
goals of ecological research and resource management 
(Marcot et al. 2006). Ecological models and related 
decision-support frameworks are simplifying abstractions of 
knowledge (Jones et al. 2002) that provide structure to what 
we know, and need to know, about a system of interest. Such 
abstractions are necessary to help define problems, convey 
ecological concepts and relationships (either known or as- 
sumed), characterize potential system responses to manage- 
ment perturbations, and evaluate alternative management 
policies. 

We contend that models are particularly effective when 
they represent complexity, causality, uncertainty, and vari- 
ability in a clear and intuitive fashion. Any model, however, 
will be founded on limiting assumptions. Models are not in- 
tended to be perfect descriptions of reality, and resultant pre- 
dictions will always be imperfect (McCarthy et al. 2001). 
Nonetheless, models have contributed greatly to resource 
management when they have used and invoked further field 
research leading to new insights, model revisions, and more 
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accurate predictions of the potential effects of management 
decisions. Such an approach to modelling fits well with the 
application of BBNs in adaptive management (Nyberg et al. 
2006). 

~ o s t  problems in resource management are characterized 
by scant data and uncertainty about how biological systems 
function and respond to specific human activities (Starfield 
and Bleloch 1986). This presents two challenges for re- 
source managers: (1) how to make good, science-based man- 
agement decisions; and (2) how to best acquire the data 
needed to improve understanding. These are also related 
problems in resource modelling. Uncertainty and the inher- 
ent complexity of ecological and resource management sys- 
tems have been cited as the basis for legal challenges to the 
biological credibility of ecological models and associated 
resource-management decisions (Harrison et al. 1993; Noon 
and Murphy 1994; Taylor et al. 2000). We expand on the 
problems of complexity, causality, uncertainty, and variabil- 
ity in ecological modelling and decision-making, and sug- 
gest some desirable characteristics of tools - particularly 
BBNs - that are intended to address resource-management 
issues (Table 1). 

Complexity and causality 
Ecosystems are composed of heterogeneous, wmplex net- 

works that exhibit nonlinear and transient behaviors (Green 
et al. 2005). Multiple interactions occur within ecosystems 
among plants and animals and are overlain by temporal, spa- 
tial, and abiotic (e.g., topographic, climatic) variation of spe- 
cies and system parameters (Olson et al. 1990a). Such 
complexity may require understanding of metapopulation 
and habitat patch dynamics, habitat connectivity, cumulative 
effects, feedback loops, and habitat affinities that are 
multiscalar and variable. 

Ecosystem management is increasingly driven towards 
multiple goals, including lofty and at times conflicting ex- 
pectations of sustainability of multiple resources over large 
areas and long time periods (Kangas and Kangas 2004). 
Management decisions that address value-laden resource de- 
scriptions such as biodiversity and ecosystem integrity defy 
easy analysis and quantification (Lambs and Eriksson 2003). 
They are better served by incorporating socio-economic, po- 
litical, and cultural considerations (Cain et al. 1999; Cain 
2001), by explicitly integrating the concerns of multiple 
stakeholders (Cain et al. 1999; Cain 2001; Kangas and 
Kangas 2004), and by reducing the value-laden descriptions 
to more objective and quantifiable parameters (Morrison and 
Marcot 1995). As management responds to the increasing 
and changing values and expectations placed on natural re- 
sources, resource-management systems themselves become 
more complex ( W b s  and Eriksson 2003; Kangas and 
Kangas 2004). 

Understanding and effectively managing complex ecologi- 
cal systems therefore require a multidisciplinary approach. A 
modelling approach such as that afforded by BBNs can rep- 
resent the complexity of ecosystem and resource- 
management systems in hierarchical ways by decomposing 
or partitioning the problem into solvable steps, clearly repre- 
senting value-laden concepts by empirical parameters, and 
combining knowledge from different disciplines and stake- 
holders (Cain et al. 1999). 

Uncertainty and variability 
Uncertainty is distinguished from variability in recogni- 

tion of their differing ramifications for decision-making 
(Thompson 2002; Cullen and Small 2004). Uncertainty is a 
lack of information or knowledge (Thompson 2002; Kangas 
and Kangas 2004) and is a property of our limitations in ob- 
serving or understanding a system (Finkel 1996). Difficulties 
in estimating system parameters arise from bias and sam- 
pling errors due to imperfect sampling techniques, and from 
measurement error. Limitations in obtaining sufficient infor- 
mation about a system's behavior prevent correct specifica- 
tion of causal relationships among system parameters and 
lead to incorrect specification of the underlying model 
(Finkel 1996). Uncertainty about parameter estimates and 
causal relationships often can be reduced with additional re- 
search (Finkel 1996; Thompson 2002). 

Variability is a system property (Finkel 1996) and refers 
to naturally or anthropogenically induced variation in an 
ecological system over space and time: that is, the degree of 
lability, or susceptibility to change, in system parameters. 
Ecological processes vary and additional research cannot re- 
duce true variability ( F i e 1  1996; Thompson 2002) but may 
lead to the degree and patterns of such variation in some pa- 
rameters becoming well known. 

Uncertainty and variability both are components of quan- 
titative risk assessment but they invoke different treatment 
and interpretation in de~ision-making. Modelling uncertainty 
can involve eliciting expert judgment to determine probabil- 
ity distributions (Cleaves 1994; Cullen and Small 2004), 
whereas modelling variability may be addressed by theoreti- 
cal or empirically derived frequency distributions (Cullen 
and Small 2004). Under uncertainty the true levels of risk 
associated with a decision are unknown (Cullen and Small 
2004) because the expected outcome of the decision might 
not actually occur (Thompson 2002). Under variability an 
expected outcome might not be optimal for all individuals, 
geographic locations, or time frames (Thompson 2002; Cul- 
len and Small 2004). 

Resource managers may want to use a tool, such as 
BBNs, that can represent both uncertainty and variability in 
terms of probabilities of different potential outcomes or sys- 
tem responses, given initial conditions and human activities 
(Olson et al. 1990a, 19906). Because of their probabilistic 
basis and their ability to explicitly represent and quantify the 
expected utility of alternative management decisions and 
strategies (decision sequences or combinations), BBNs lend 
themselves well to representing variability of the system and 
uncertainty of understanding, and their implications to possi- 
ble management decisions (Kuikka et al. 1999). Compared 
to deterministic point estimate models, this accounting for 
uncertainty and variability in information may dramatically 
change managers' perceptions of both the current status and 
acceptable utilization rate of resources (Kuikka et al. 1999). 
Results derived from deterministic mint estimate models or 
classical hypothesis testing may unierestimate the attendant 
risks of a decision due to failure to consider all plausible pa- 
rameter values and all plausible combinations thereof, o r  all 
plausible hypotheses, and the attendant uncertainties (Lud- 
wig 19%; Kuikka et al. 1999). Bayesian approaches can be 
used to assess the relative plausibility of parameter values 
and hypotheses and weight them accordingly through ex- 
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Table 1. Useful characteristics of Bayesian belief network (BBN) models and caveats about their application in ecological modelling and resource management. 

Description of issue Useful characteristics of BBNs Caveats about using BBNs 
Complexity 
Requires a multidisciplinary approach to account for: Flexible use of information: BBNs require a fully specified probabilistic 

multiple interactions among plants and animals diverse measurement scales (nominal, ordinal, continuous) model and often require elicitation of 
temporal, spatial. and abiotic variation diverse scientific disciplines expert judgment 
increasing and changing resource values diverse origins (empirical, expert-based, traditional knowl- Nodes in the models should be empirically 
socio-economic, political, and cultural considerations edge from F i i  Nations) observable, quantifiable, or defensible 

can accommodate previous information Care must be exercised to prevent unwieldy 
case data can be used to update or test models conditional probability tables 

Approaches that use data to induce the 
Rapid and flexible modelling environment: model structure (i.e., nodes, states, and 

time- and cost-effective to build and apply linkages) should be used sparingly to 
models can be adapted to incorporate additional factors as avoid creating unwieldy model structures 
required 
developed subcomponents of the models can often be ap- Feedback functions and temporal relation- 

ships are not possible or are poorly plied to other problems 
are more amenable to updating than some competing handled 

knowledge representations Continuous variables must be discretized 

Uncertainty and variability 
Information is often insufficient to adequately define and 

predict ecosystem characteristics 
Ecological processes vary naturally over space and time 
Many ecosystem components interact in unpredictable 

ways, affecting outcomes of interest to management 

Predicated on an established normative theorem that can Usually do not explicitly represent bias or 
explicitly represent uncertainty and variability strict propagation of error 

Appropriate for addressing both data-rich and data-poor Models can be easily developed, entirely 
problems from expert judgment, with an unknown 

Can provide support for development of field experiments degree of bias and inaccuracy 
to reduce uncertainties in risk analysis and adaptive- 
management approaches 



Table 1 (concluded). 

Description of issue Useful characteristics of BBNs Caveats about using BBNs 

Acceptability and communication 
Models and policies must have "face validity" to policy Can be presented to and understood by decision-makers Modellers need to demonstrate causal 

makers and stakeholders and stakeholders: relations 
Models must be understandable to those who lack formal easily understood graphical representation Modellers are required to fully consider 

training in the underlying scientific disciplines are interactive and easily reveal how input conditions in- how to present and explain the models to 
fluence the probabilities of model outcomes decision-makers and stakeholders 
protocols exist for testing, revision, and peer review Potential explanatory variables or sources 
support stakeholder input and promote acceptance and im- of uncertainty not included in the causal 
plementation of decision-support frameworks web should be identified and addressed 

Compared with mathematical models and other knowledge 
representations, they 

are more easily understood by those who did not build 
them 
serve better as a communication tool 
provide a repository of understanding for posterity 

Decision-making 
Decisions must be made in the face of complexity, 

uncertainty, and variability 
Risk analysis and risk management are essential features 

of decision-making 

Support a systematic approach to sensitivity analysis: Decision-makers must not assume that all 
pennit identification of factors, or interactions between relevant uncertainties regarding knowl- 

factors, that are most influential on model outcomes edge or objectives have been incorporated 
encourage risk analysis and risk management into the decision rules 
aid development of validation and effectiveness monitor- BBNs should be incorporated into an adap- 
inn tive-management process to aid decision- - 

making rather than to dictate decisions 
Model outcomes can be examined for their most likely Model structure can influence the results of 

causes, which aids in understandig the model sensitivity testing and thus bias the 
Can be cast as decision networks that rapidly recalculate apparent influence of some variables and 

utilities, as alternative decisions or strategies are will affect decisions and strategies i? 
specified ? 

Fit well with adaptive-management concepts L 
71 
9 
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plicit consideration of uncertain or subjective information, 
and can lead to a systematic approach to sensitivity analysis 
(Ludwig 1996). 

Acceptability and communication 
Resource management is, at its heart, people management, 

and is mediated through revealing to decision-makers, the 
public, and others the consequences of competing manage- 
ment policies. The degree to which a proposed resource-use 
policy is acceptable to decision-makers and stakeholders 
lies, in part, in the validity of the underlying scientific evi- 
dence, consistency with existing social and cultural views, 
economics, and the degree to which the policy is understand- 
able and commensurate with other existing, accepted poli- 
cies (e.g., Carr et al. 1998; Butler and Koontz 2005). In 
modelling, "face validity" is used to determine if a model 
fits preconceived notions and makes sense (Gass 1977; 
Lacity and Janson 1994), and reflects its degree of accept- 
ability. Models for guiding resource-use policy should have 
high face validity among experts and ultimate users, and 
therefore can help guide communication with nonexperts. 

Most decision-makers, public interest groups, and legal 
professionals are not trained as ecologists or modellers and 
are unlikely to comprehend tests of null hypotheses, techni- 
cal jargon (Ellison 1996), or complex representations of eco- 
systems (Boyce 1992). Thus, a modelling approach that 
provides a readily understandable representation of complex 
systems and human influences, without sacrificing desired 
levels of accuracy and validity, can be of vast help in com- 
municating with nonspecialists. To this end, we have found 
that BBNs facilitate communication through their interactive 
nature and ability to demonstrate graphically how assump- 
tions affect the probability of outcomes (Kuikka et al. 1999). 
Several papers in this series also describe the use of simpli- 
fied '%ox and arrow" influence diagrams (Marcot et al. 
2006; Nyberg et al. 2006; Walton and Meidinger 2006) that 
express expected causal relationships as the basis for repre- 
senting or creating more complex BBN models (Zhang 
1998); influence diagrams also have great value as a com- 
munication tool (Marcot 2006b) as well as providing the ba- 
sis for alternative model structures, including BBNs. 

Decision-making 
Resource management entails making difficult decisions 

in the face of interactions among complexity, uncertainty, 
and variability. Complexity makes understanding uncertain 
and communicating what we understand difficult; uncer- 
tainty about our understanding and inherent parameter vari- 
ability make the results of decisions imprecise. We are not, 
however, absolved from making resource decisions (Beissinger 
and Westphal 1998; Peterman and Peters 1998). Classical 
hypothesis testing provides a poor basis for decision-making 
about resources because it does not reveal the probabilities 
and utilities of null and alternative hypotheses given the 
data, even though this information is what managers fre- 
quently want (Ellison 1996). Consequently, explicit treat- 
ment of uncertainty and variability through risk analysis 
(i.e., determining the probability of possible outcomes and 
their utilities; Marcot 1998) and risk management (i.e., artic- 
ulating the manager's attitude to risk; Marcot 1998) is a 
component of effective decision-making, enhances the face 

validity of decisions and models used, and allows decision- 
makers to examine trade-offs between a desirable outcome 
and the chance (or risk) that a particular management deci- 
sion may not lead to such an outcome (Cain 2001; Kangas 
and Kangas 2004). 

The decision-making process can be supported by using 
Bayesian decision networks (BDNs; Nyberg et al. 2006), 
which are BBNs that incorporate nodes to represent poten- 
tial management decisions and, optionally, utilities of out- 
comes. Other modelling approaches such as decision trees 
can explicitly show alternative decisions and utilities, but 
BDNs apparently are unique in that they instantly recalculate 
and clearly display probabilities of conditions and outcomes, 
and the resultant utility, as alternative decisions or strategies 
are specified. Comparing outcome values weighted by their 
respective probabilities among alternative management deci- 
sions is a representation of risk associated with the uncer- 
tainty, variability, and complexity surrounding potential 
management activities. BBNs also can contribute indirectly 
to sound decision-making by representing probabilities of 
ecological responses to natural events and management ac- 
tions within larger decision-support frameworks. For exam- 
ple, dynamic landscape models can be used to generate 
inputs to BBNs that, ih turn, predict outcomes of alternative 
simulations in meaningful ways that can aid a resource deci- 
sion process, such as in the management of habitat for 
woodland caribou (RangiLfer tarandus caribou (Gmelin); 
McNay et al. 2006). 

Shortcomings of and caveats about using BBN models 
Notwithstanding tensions between "frequentists" and 

Bayesians (Dennis 1996), BBNs have, in addition to their 
strengths, specific weaknesses, and caveats are necessary re- 
garding their use qable 1). construction of BBNs requires 
the specification of a full probability structure of variables 
and their relations (Olson et al. 1990b), which can be cum- 
bersome to implement. For example, conditional probability 
tables (CPTs) of child nodes are usually derived from exist- 
ing data sources, expert judgment, or a combination. Often 
data are scarce for particular configurations in the CPT and 
expert judgment must fill in the gaps. This can be a daunting 
task for rare events and when the number of probabilities to 
be estimated is large. CFTs can quickly become unwieldy 
(Marcot et al. 2006; Walton and Meidinger 2006) when they 
represent large numbers of states of multiple parent nodes 
and of the node being evaluated. Elicitation of expert judg- 
ment should follow structured approaches, particularly to ad- 
dress rare but important events and to minimize the potential 
for bias (Cleaves 1994). Marcot et al. (2006) and Marcot 
(2006a) provide guidelines on structuring BBNs to keep 
CPTs tractable and how to create CPTs using expert judg- 
ment. 

Temporal dynamics are important considerations in ecol- 
ogy and resource management because biotic systems 
change over time. BBNs represent temporal dynamics 
poorly, however, through a cumbersome process of time ex- 
pansion (Nyberg et al. 2006) that involves discretizing time- 
based variables, replicating the entire BBN structure for 
each instance of time, and establishing links between nodes 
in adjacent replicates of the BBN. For some applications, the . 

temporal component can be handled outside the BBN, but 
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this often requires substantial exchanges of data between 
models. In general, the difficulty of handling temporal dy- 
namics highlights two additional drawbacks of BBNs: 
(1) the requirement to discretize continuous functions, which 
can result in lower precision of variable values, and (2) their 
inability to handle the feedback loops that are often impor- 
tant in ecology and other disciplines (Nyberg et al. 2006). 

Although BBNs offer some advantages in addressing un- 
certainty and variability, they are still prone to many of the 
general limitations of other modelling approaches. In most 
applications it is unlikely that all sources of causality, uncer- 
tainty, and variability are incorporated in the model or enu- 
merated without errors and inaccuracies. BDNs also are 
taxed by decision-rule uncertainty (Finkel 1990) that stems 
from difficulties in quantifying or comparing societal values 
and preferences. Poor enumeration or omission of relevant 
uncertainties, for example, results in overestimating system 
controllability and a too optimistic perception that some de- 
sired outcome will be attained (Kuikka et al. 1999). 

BBNs, like other modelling approaches, should not dictate 
management decisions (Conroy 1999) but could aid 
decision-making as components of a larger process of man- 
agement, research, and monitoring. The onus remains on the 
modeller to demonstrate causality and address potential 
explanatory variables not included in the model. Decision- 
makers should not assume that all relevant uncertainties 
(either informational or with respect to management objec- 
tives) and variability have been identified and included in 
the model. Marcot et al. (2006) and Nyberg et al. (2006) ex- 
pand on several weaknesses of BBNs and caveats about their 
use in ecological and resource-management applications. 

Papers in this series 

The remaining papers in this series on BEN applications 
in ecology and resource management provide readers with 
guidelines for their development and examples of recent ap- 
plications of BBNs in these contexts. We briefly summarize 
the objectives of each paper here. 

Approaches and insights concerning the correct building 
of BBNs are scattered widely throughout the literature. In 
"Guidelines for developing and updating Bayesian belief 
networks applied to ecological modeling and conservation", 
Marcot et al. (2006) present practical procedures to guide 
the development, testing, and revising of BBNs and avoid 
spurious or unreliable models. They illustrate their approach 
with an example of an empirically based ecological BBN 
that predicts capture success for northern flying squirrels 
(Glaucomys sabrinus Shaw) as a function of the probability 
of squirrels' presence due to habitat, and the probability of 
detection if they are present. 

Applications of BBNs for resolving resource-management 
issues involving high-profile species are the focus of two pa- 
pers. McNay et al. (2006) apply BBNs to aid in the evalua- 
tion of conservation-policy scenarios for woodland caribou 
seasonal ranges in "A Bayesian approach to evaluating habi- 
tat for woodland caribou in north-central British Columbia". 
Following the procedures of Marcot et al. (2006), they de- 
velop BBNs to model seasonal ranges of woodland caribou 
and apply the BBNs to assess spatially explicit range condi- 
tions over four planning areas under optimal, current, and 

simulated future conditions that mimic a conservation-policy 
scenario and a natural-disturbance scenario. In this applica- 
tion BBNs help to articulate ecological understanding and 
threats to woodland caribou seasonal ranges, to focus deci- 
sions, and to support an assessment of attendant risks in the 
decision-making process. 

In "A population-viability-based risk assessment of mar- 
bled murrelet nesting habitat policy in British Columbia", 
Steventon et al. (2006) apply diffusion models implemented 
in a BBN framework to conduct population-viability analy- 
ses for the Marbled Murrelet (Brachyramphus mannoratus 
Gmelin). They use this approach to make regional and 
coastwide population-resilience assessments, considering 
policy inputs such as the amount and quality of nesting habi- 
tat, the number of subpopulations, and the time scale of the 
assessment. In addition to allowing explicit and flexible in- 
clusion of uncertainty, the BBN approach permits rapid and 
interactive modifications of parameter value weightings (to 
explore sensitivity) and probability distributions (to express 
assumptions representing views of multiple decision- 
makers). 

In Walton and Meidinger's (2006) paper, "Capturing ex- 
pert knowledge for ecosystem mapping using Bayesian net- 
works", BBNs are applied, apparently for the first time in 
British Columbia, as the knowledge base (i.e., a set of rules 
defining relationships between input variables and output 
predictions) for predictive ecosystem mapping. Large-scale 
ecosystem maps are fundamental tools for land managers re- 
sponsible for assessing the impacts of resource-extraction 
activities such as forestry on other resource values (e.g., 
woodland caribou; McNay et al. 2006). Although map- 
accuracy results are similar to the prevailing belief-matrix 
approach to predictive mapping, the authors conclude that 
BBNs are easier to develop, interpret, and update. 

In the final paper of this series, "Using Bayesian belief 
networks in adaptive management", Nyberg et al. (2006) 
note that formal models are not always applied in adaptive- 
management programs and argue that many such programs 
would benefit from the use of the powerful and easily 
grasped modelling approach of BBNs. They outline the ap- 
plication of BBNs in the adaptive-management process and 
provide a supporting case example of a BEN applied to the 
adaptive management of forests and terrestrial lichens im- 
portant as winter forage for woodland caribou. Important 
benefits of a BBN in this context are the promotion of a 
shared understanding of the system and the fomenting of 
rigorous consideration of alternative resource-management 
policies. 

Conclusion 

BBNs are effective tools in structuring and focusing eco- 
logical research. They can be applied in two main ways to 
guide ecological research. The first way is to evaluate under- 
standing of the overall functioning of the ecosystem por- 
trayed. Research can focus on the "arrows" of the BEN and 
address the functional relationships of the ecosystem, or on 
the "rules" used to construct the conditional probabilities for 
a node and address the mechanisms that describe the interac- 
tion of factors in determining the values of resulting re- 
sponse variables. Research and BBN modelling can address 
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questions as to what ecological processes are involved, 
which ones are most important in influencing outcomes, 
how they interact, and how predictor variables contribute to 
ecological processes. 

The second use of BBNs in research is to evaluate the val- 
ues of the response nodes. Research can focus on field eval- 
uations that test the model and can provide empirical 
information that is quantitative, useful, and focused on a key 
ecological variable. BBNs can aid such research by identify- 
ing variables that have the greatest influence on outcomes 
but are understood the least, and by supporting the structur- 
ing and designing of adaptive-management trials to test re- 
sponses to management decisions. 

Most applications of BBNs for resource-management pur- 
poses should be placed within a framework that supports 
learning from what we do, links management to science, and 
promotes continual improvement in management protocols. 
We recognize seven steps in the development of such a 
framework: (1) the need for a decision is acknowledged 
(Olson et al. 1990a); (2) the problem is clearly articulated by 
engaging the stakeholders; (3) a "causal-web" understanding 
of the system (the "model") is built; (4) potential future con- 
sequences of each decision are listed, probabilities are as- 
signed, and values (utilities) of each identified outcome are 
calculated (risk analysis); (5) the decision-maker ("man- 
ager") articulates their decision criteria and risk attitude (risk 
management); (6) the decision-maker makes the appropriate 
decision (Olson et al. 1990~) ;  and (7) the researcher con- 
ducts supportive field experiments and monitors clearly es- 
tablished indicators to provide baseline information, ensures 
that activities are in compliance with the decision, deter- 
mines the effectiveness or success of the decision with 
respect to desired future conditions, and validates the as- 
sumed causality under which the decision was derived. In 
essence, these steps define an adaptive-management program 
(Nyberg et al. 2006) with the proviso that field experiments 
and monitoring result in iterative refinement of steps 2 
through 7. BBNs can play increasingly helpful roles within 
an adaptive-management framework such as causal-web 
models to aid understanding of ecosystem response (step 3) 
within larger modelling environments that support decision- 
making and resource management, and as decision networks 
(steps 4-6) that clearly display the anticipated effects of al- 
ternative management decisions and strategies. 
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