Answers to Exercise 19

Sensitivity and Elasticity Analysis

1. Overall, sea turtle population growth, , is much more sensitive to small changes in survival values than fertility values. The model was most sensitive to the transition period from large juveniles to small adults, where a very small increase in $P_{lj,sa}$ will cause a change in by a factor of 0.29 when all of the other elements in the L matrix are held constant. That is, increasing $P_{lj,sa}$ by 0.01 will increase by (0.01)(0.29) = 0.0029.

	R	S	T	U	V	W		
10		Sensitivity matrix						
11		F(h)	F(sj)	F(Ij)	F(sa)	F(a)		
12	Hatchlings	0.0579	0.1573	0.0251	0.0018	0.0008		
13	Small juveniles	0.0816	0.2217	0.0354	0.0025	0.0011		
14	Large juveniles	0.4318	1.1725	0.1871	0.0132	0.0056		
15	Subadults	6.6950	18.1795	2.9005	0.2044	0.0875		
16	Adults	25.1585	68.3155	10.8996	0.7682	0.3289		

2. Elasticity analysis estimates the effect of a *proportional* change in the vital rates on population growth. In essence, elasticities are proportional sensitivities, scaled so that they are dimen-sionless. This allows you to directly compare survival and reproductive matrix elements. Inspection of the elasticity matrix shows that, by far, adult survival (the probability that an adult will remain an adult in the next time step) is the most important matrix element in terms of . The elasticity for adult survival 0.279, indicates that a 1% increase in adult survival will cause 0.279 % increase in .

	R	S	T	U	V	W			
19		Elasticity matrix							
20		F(h)	F(sj)	F(Ij)	F(sa)	F(a)			
21	Hatchlings	0	0	0	0.008669156	0.049244572			
22	Small juveniles	0.057913728	0.16378255	0	0	0			
23	Large juveniles	0	0.057913728	0.129163877	0	0			
24	Subadults	0	0	0.057913728	0.146512753	0			
25	Adults	0	0	0	0.049244572	0.279641337			

Answers: Exercise 19 Page 1 of 2

3. Sensitivity and elasticity calculations depend on the parameters entered in the original matrix, and how well those parameters have been estimated. A change in one parameter will change the sensitivity and elasticity computations (try it for yourself by changing some original matrix entries). These parameters are likely to vary over time and are often difficult to estimate. Be careful not to over-interpret your results. Your results basically tell you what would happen *if* the matrix parameters are in fact unbiased, and *if* you are able to hold other elements in the matrix constant to examine the effect of each element.

Answers: Exercise 19 Page 2 of 2