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Objectives

• Understand the concept of game theory.
• Set up a spreadsheet model of simple game theory 

interactions.
• Explore the effects of different strategies on animal fitnesses.
• Understand the concept of an evolutionarily stable strategy.
• See how the concept of an evolutionarily stable strategy is a

strong argument against group selection.

INTRODUCTION
Evolutionary biologists have long been interested in behavioral interactions
between animals and how these interactions affect evolutionary fitness. One
approach has been to model interactions using game theory. Game theory in its
broadest sense is the mathematical analysis of conflict, and it has been applied to
interactions between countries, business firms, individual humans, and animals.
This exercise follows John Maynard Smith’s (1976) model of behavioral interac-
tions between animals and leads to his concept of an evolutionarily stable strat-
egy (ESS). We will apply this model to the question of individual selection ver-
sus group selection—that is, the question of whether natural selection can act on
groups as well as on individuals.

In our context, we will imagine that animals engage in contests over resource
items, such as food, nest sites, or mates. We will assume that in each contest,
there is only one winner, and the winner takes all of the contested resource item.
Bear in mind, however, that animals engage in repeated contests, and any given
animal may win on one occasion and lose on another. Our model makes several
assumptions:

• We assume that winning a resource item increases an animal’s fitness (in
the evolutionary sense) by some amount, which we will symbolize as V
(for victory).

• We assume that if an animal sustains an injury in a contest, that reduces
its fitness by some amount, symbolized as W (for wound).

• Finally, we assume that if a contest continues too long, it costs both partic-
ipants some amount of fitness, T (for time), representing the metabolic
energy expended during the contest, and forgone opportunities to garner
other resource items.

 



We will also assume, at least to begin with, that each animal always employs the same
behavioral strategy in these contests. We will relax this assumption later.

Doves versus Hawks
By calling these behaviors “strategies,” we do not necessarily imply any conscious deci-
sion-making by the animals. The word strategy in this context simply means a rigid,
predictable set of behaviors that always occur in response to certain stimuli. To make
this clear, we will define two strategies, called “Dove” and “Hawk” (Maynard Smith
1976). A Dove begins a contest by making a threat display but never backs up its threat
with real violence. If its opponent displays, a Dove continues to display, but if its oppo-
nent attacks, a Dove retreats immediately. A Hawk wastes no time on display, but
attacks immediately.

A contest between two Doves becomes a drawn-out battle of displays, with no injuries
but much wasted time. In a contest between a Dove and a Hawk, the Dove retreats
immediately when the Hawk attacks, and thus loses the resource item, but avoids injury.
A contest between two Hawks is a violent affair, in which one party is always injured
and retreats from the fray, leaving the resource item to the uninjured victor.

We can translate these descriptions into mathematical expressions using the fitness
values defined above. A Dove contesting with another Dove will win half the contests
and lose half, but it will always pay the time cost, T, of extended display. Thus, on aver-
age, the payoff to Doves contesting with other Doves will be (V/2 ) – T. A Dove con-
testing with a Hawk will always lose, but will not spend time or suffer injury. Thus,
the mean payoff to Doves contesting with Hawks is zero. A Hawk will always win imme-
diately against a Dove, and so the mean payoff to Hawks contesting with Doves is V.
Finally, a Hawk fighting a Hawk will win half the time, and enjoy a fitness payoff of V,
but it will also lose half the time, at a cost of W. So, the mean payoff to Hawks fighting
Hawks is (V/2 ) – (W/2), which we can simplify to (V – W )/2.

We can conveniently represent these outcomes in a payoff matrix in which we show
all possible encounters and the fitness implications for the participants (Table 1). The

payoffs are for the player on the left.
We want to know which strategy confers higher fitness. To find out, we need to cal-

culate the mean fitness of Doves and Hawks in a mixed population. Let us represent the
frequency of Hawks by H, and the frequency of Doves by D. These are relative fre-
quencies, and therefore lie between 0 and 1, and sum to 1 (i.e., H + D = 1). 

Let us assume that encounters occur at random. If we consider all the encounters of
an average Dove, the proportion of them that will involve another Dove will be D, and
the proportion that will involve a Hawk will be H, or 1 – D. The frequencies of encoun-
ters will be the same for the average Hawk.

To calculate the mean fitness of Doves, we must weight the payoffs of each kind of
encounter by its frequency: the mean fitness of Doves is

Equation 10 2H V T D+ −




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Table 1. Payoff matrix for Hawks versus Doves.

Hawk Dove

Hawk V

Dove 0 V T2 −

V W−
2



By the same logic, the mean fitness of Hawks is 

Equation 2

If we start with a population consisting of some mixture of Hawks and Doves, which
strategy will prevail? The answer is not obvious. Hawks always win encounters with
Doves, but Doves are never injured. We can approach the question by determining
whether Hawk or Dove is an evolutionarily stable strategy, or ESS. An evolutionarily
stable strategy is one that cannot be successfully invaded by any of the other strategies
in the game.

Let us imagine a population consisting entirely of Doves. Could Hawks success-
fully invade? The concept of invasion in this context includes not only immigration, but
also the appearance of mutations within the population. In other words, Hawks may
move into the Dove population, or a genetic mutation may cause some Dove offspring
to behave as Hawks.

In either case, a few invading Hawks would mean that D ≈ 1 and H ≈ 0. The mean
fitness of Doves, Equation 1, would then be approximately

or  

Analogously, the mean fitness of Hawks, Equation 2, would be approximately

or   V

Provided V and T are both greater than 0 (which is implicit in the definitions), V will
be greater than (V/2) – T, and Hawks will increase in numbers. This is a successful
invasion, and therefore Dove is not an evolutionarily stable strategy against Hawk.

PROCEDURES

But is Hawk an evolutionarily stable strategy against Dove? Could a few Doves suc-
cessfully invade a population of Hawks? We will find the answer using a spreadsheet
model, and it may surprise you. As always, save your work frequently to disk.

ANNOTATION

These are all literals, so just select the appropriate cells and type them in.

V W V−



 +2 0 1( ) ( )

V T2 −0 0 2 1( ) ( )+ −





V T

V W H VD−



 +2

INSTRUCTIONS

A. Game Theory Model

1. Open a new spreadsheet
and set up titles and col-
umn headings as shown in
Figure 1. Enter only the
text items for now.
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Evolutionarily Stable Strategies

Based on John Maynard Smith's model of Hawks and Doves

All costs and benefits are expressed in "fitness points."

Model assumes that the probability of winning a fair encounter (i.e., Hawk vs. Hawk or Dove vs. Dove) is 0.50.

It also assumes that a Hawk always wins against a Dove.

Outcome Fitness points Payoff matrix (payoffs  to player on  left) Equilibrium mix

Victory 0.50 Hawk Dove Proportion of Doves

Wound 1.00 Hawk Proportion of Hawks

Time 0.10 Dove

Fitness matrix

Population composition Mean fitness

Doves Hawks Doves Hawks Population All Hawks

0.0 1.0 All Doves

0.1 0.9 Equilibrium mix

0.2 0.8

Proportion Fitness

Figure 1



In cells B8, B9, and B10 enter the values 0.50, 1.00, and 0.10, respectively. These are the
values in fitness points of victory, a wound, and time lost.

In cell E9, enter the formula =0.5*(B8-B9). This corresponds to (V – W)/2,  the payoff
to a Hawk in an encounter with another Hawk.
In cell E10, enter the value 0. This is the payoff to a Dove in an encounter with a Hawk.
In cell F9, enter the formula =B8. This is the payoff to a Hawk in an encounter with a
Dove. Use a formula rather than entering the value V, so that when you change V in
cell B8, the change will automatically occur in cell F9 as well.
In cell F10, enter the formula =0.5*B8-B10. This corresponds to (V /2) – T, the payoff
to a Dove in an encounter with another Dove.

In cell A14 enter the value 0.
In cell A15 enter the formula =A14+0.1. Copy the formula into cells A16 through A24.

In cell B14 enter the formula =1-A14. Copy the formula into cells B15 through B24.
Note that the frequency of Doves plus the frequency of Hawks must equal 1.

In cell C14 enter the formula =$E$10*B14+$F$10*A14.
This corresponds to, Equation 1

and calculates the mean fitness of Doves in a population having the proportion of Doves
and Hawks shown to the left in the same row.

We include $E$10*B14 (i.e., 0H) in the formula in case you want to change the payoff
in cell E10 later in the exercise.

In cell D14 enter the formula =$E$9*B14+$F$9*A14.
This corresponds to Equation 2

and calculates the mean fitness of Hawks in a population with the same proportion of
Doves and Hawks.

Copy the formulae from cells C14 and D14 into cells C15 through D24.

Select cells B14 through D24 and make an XY graph. Edit your graph for readability.
It should resemble the one in Figure 2.

V W H VD−



 +2

0 2H V T D+ −





2. Enter the values shown
in Figure 1 for V, W, and T.

3. Enter formulae to calcu-
late values of the payoff
matrix.

4. Create a series in col-
umn A to represent vari-
ous frequencies of Doves
in the population.

5. Create a series in col-
umn B to represent vari-
ous frequencies of Hawks
in the population.

6. Calculate the mean fit-
ness of Doves in a popula-
tion of all Hawks.

7. Calculate the mean fit-
ness of Hawks in a popu-
lation of all Hawks.

8. Calculate the mean fit-
nesses of Doves and
Hawks at each of the pop-
ulation ratios in columns
A and B. Save your work.

9. Graph the mean fitness
of Doves and Hawks
against the proportion of
Hawks in the population.

10. Answer questions 1–5
at the end of the chapter.
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Equilibrium Solutions
In answering questions 1–5 at the end of the chapter, you should have discovered that
if V < W, neither strategy is an ESS, and the equilibrium population will consist of a mix-
ture of Hawks and Doves. In the first section of this exercise, we spoke of these strate-
gies as being fixed patterns of behavior. However, the model may still apply even if
behavior is not so rigid. We may suppose that a given animal behaves as a Hawk in
some encounters and as a Dove in others. This changes our interpretation of the equi-
librium result somewhat. Now we may conceive of the equilibrium as representing
the optimal split in each animal’s behavior. For example, if the equilibrium is 0.60 Dove
and 0.40 Hawk, that would indicate that an animal achieves the greatest fitness by act-
ing like a Dove in 60% of its encounters, and like a Hawk in 40%.

As you discovered graphically above, if wounds cost more than victory pays (i.e., if
W > V), then neither Hawk nor Dove is an ESS. In such cases, the equilibrium popula-
tion will consist of some mixture of Hawks and Doves. Can we determine what this
equilibrium mixture will be?

We can, if we begin with an insight from Figure 2, our graph of fitness of Hawks
and Doves at various frequencies of the two strategies. When the two strategies are at
their equilibrium frequencies, their mean fitnesses are equal. This must be so, because
if either strategy had a higher mean fitness, its frequency would increase, and there-
fore the population would not be at equilibrium.

So, if we represent the equilibrium frequency of Hawks as Heq and the equilibrium
frequency of Doves as Deq, we can write

Because Heq and Deq are relative frequencies, they must add up to 1. Therefore, we
can rewrite Heq as 1 – Deq, and substitute:

If we eliminate the zero term on the left, and multiply both sides by 2, we get

(V – 2T)Deq = (V – W)(1 – Deq) + 2VDeq

0 1 2 2 1( ) ( )− + −



 = −



 − +D V T D V W D VDeq eq eq eq

0 2 2H V T D V W H VDeq eq eq eq+ −



 = −



 +
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Carrying out the multiplications gives us

VDeq – 2TDeq = V + WDeq – W – VDeq + 2VDeq

Canceling and rearranging terms yields

–2TDeq = V + WDeq – W

Collecting terms, we get

Deq(2T + W) = W – V

and dividing both sides by (2T + W) gives us the solution

Equation 3

This equation agrees with our graphical analysis: If W = V, then the equilibrium fre-
quency of Doves is zero; if W > V, then Deq is between 0 and 1. In the numerator W
has a positive number (V) subtracted from it, and in the denominator it has a positive
number (2T) added to it, so Deq must always be less than 1. Therefore, Dove is not an
ESS against Hawk, regardless of the values of V, W, and T—as long as all are greater
than zero.

If W < V, then the equation appears to predict a negative equilibrium frequency for
Doves. This makes no sense, so we interpret it to mean that the frequency of Doves
will decline (from any starting value) until it reaches zero. In other words, if W < V, then
Hawk is an ESS against Dove.

For the sake of completeness, we can calculate the equilibrium frequency of Hawks
as 1 – Deq, or

Substituting for 1 gives us

Combining the fractions, we get

Equation 4

Although it is not as obvious, this equation makes the same predictions as Equation
3. That is, if W = V, then Hawk is an ESS against Dove; if W > V, Hawk is not an ESS
against Dove (but remember, Dove is never an ESS).

Group Selection versus Individual Selection
These equilibrium solutions may not seem very interesting in themselves, but we can
use them to arrive at some interesting conclusions. People often argue that some phys-
ical or behavioral trait exists because it benefits the species (or the population, or some
other group). For instance, it is often said that humans (and many other animals) dis-
play cooperative behavior because cooperative groups are better at gathering food or
fending off predators, or for other reasons have higher odds of survival. Such argu-
ments are called group selection arguments, because they claim that natural selection
operates on the group as a whole. Group selection argues that natural selection will
favor a trait that confers higher fitness on the group, even if it reduces the fitness of the
individuals that make it up. 

The contrasting position, individual selection, claims that natural selection operates
on individuals, not groups. Individual selection arguments predict that natural selec-

H T V
T Weq = +

+
2
2

H T W W V
T Weq = + − +

+
2

2

H T W
T W

W V
T Weq = +

+ − −
+

2
2 2

2
2
T W
T W

+
+

H W V
T Weq = − −

+1 2

D W V
T Weq = −

+2
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tion will favor a trait that confers higher fitness on individuals, even if it reduces the fit-
ness of the group to which they belong. 

We will use the equations for mean fitness of Doves and Hawks, and their equilibrium
solutions, to investigate the contrast between group selection and individual selection. We
will show that if a population consisted entirely of Doves, it would have a higher mean
fitness than a population consisting entirely of Hawks or of any mixture of Hawks and
Doves. A group selectionist would therefore expect the frequency of Doves in a popula-
tion to increase, because that would benefit the group. However, as we will see, individ-
ual Hawks have higher fitness than individual Doves (at least when Hawks are rare). An
individual selectionist would therefore expect natural selection to favor Hawks over Doves
(at least when Hawks are rare), even if that reduces the fitness of the group as a whole.

PROCEDURES

Our strategy to test these ideas has five components:
• Calculate the mean fitness of the entire population, across the range of all mix-

tures of Hawks and Doves, from D = 0 and H = 1 to D = 1 and H = 0.
• Graphically estimate the mixture of Hawks and Doves that produces the maxi-

mum mean population fitness.
• Calculate the equilibrium mix of Doves and Hawks.
• Calculate the mean fitness of a population consisting of the equilibrium mix.
• Compare the maximum possible mean fitness of the population to its mean fit-

ness at equilibrium.

We will repeat these steps for various values of V, W, and T, and compare the calcu-
lated values of mean fitness. We will see that this game theory model supports indi-
vidual selection.

As always, save your work frequently to disk.

ANNOTATION

Enter these values into cells B8, B9, and B10, respectively.

In cell E13 enter the label “Population.”

In cell E14 enter the formula =C14*A14+D14*B14. Copy this formula into cells E15–E24.
This formula multiplies the mean fitness of Doves by their frequency and the mean fit-
ness of Hawks by their frequency, then adds the two products together. When you have
finished, your spreadsheet should resemble Figure 3.

INSTRUCTIONS

B. Group selection ver-
sus individual selection.

1. On the spreadsheet you
prepared earlier (see
Figure 1), change the val-
ues of V and W to 1, and
the value of T to 0.

2. Add a column heading
for mean fitness of the
entire population.

3. Calculate the mean fit-
ness of the entire popula-
tion for each mixture of
Doves and Hawks in cells
A14 through B24.
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These are all literals, so just select the appropriate cells and type them in.

In cell I8, enter the formula =IF((B9-B8)/(2*B10+B9)>0,(B9-B8)/(2*B10+B9),0).
In this formula, (B9-B8)/(2*B10+B9) corresponds to Equation 3:

However, this equation can predict negative equilibrium frequencies for Doves, given
some parameter values. We use the IF() function to restrict Dove frequencies to non-
negative values. If Deq is negative, we set it to zero.

In cell I9, enter the formula =1-I8.
This is the spreadsheet equivalent of 1 – Deq. Because Heq + Deq = 1, we do not need to
use Equation 4 to calculate the equilibrium frequency of Hawks. You can, if you pre-
fer, enter the spreadsheet equivalent of Equation 4; it should yield the same result.

D W V
T Weq = −

+2

4. Set up labels in column
H and in cell I12, as
shown in Figure 4.

5. Calculate equilibrium
frequencies of Doves and
Hawks.
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Outcome Fitness points Payoff matrix (payoffs  to player on  left)

Victory 1.00 Hawk Dove

Wound 1.00 Hawk 0.00 1.00

Time 0.00 Dove 0.00 0.50

Doves Hawks Doves Hawks Population

0.0 1.0 0.000 0.000 0.000

0.1 0.9 0.050 0.100 0.095

0.2 0.8 0.100 0.200 0.180

0.3 0.7 0.150 0.300 0.255

0.4 0.6 0.200 0.400 0.320

0.5 0.5 0.250 0.500 0.375

0.6 0.4 0.300 0.600 0.420

0.7 0.3 0.350 0.700 0.455

0.8 0.2 0.400 0.800 0.480

0.9 0.1 0.450 0.900 0.495

1.0 0.0 0.500 1.000 0.500

Proportion Fitness

Figure 3
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In cell I13 enter the formula =E9.
In an all-Hawk population, all encounters will be Hawk against Hawk. Therefore, all
members of the population will receive the same payoff, (V – W)/2, which is calculated
in cell E9.
You can arrive at the same result using Equation 2 to calculate the mean fitness of
Hawks, bearing in mind that H = 1 and D = 0.

In cell I14 enter the formula =F10.
In an all-Dove population, all encounters will be Dove against Dove. Therefore, all
members of the population will receive the same payoff, (V/2) –T, which is calculated
in cell F10. 
You can arrive at the same result using Equation 1 for mean fitness of Doves, bearing
in mind that H = 0 and D = 1.

In cell I15 enter the formula =$E$9*I9+$F$9*I8.
This is the spreadsheet version of Equation 2 for the mean fitness of Hawks, this time
using the equilibrium values of D and H, as calculated in cells I8 and I9. Remember
that, at equilibrium, the mean fitnesses of Hawks and Doves are equal, so this is equiv-
alent to calculating the mean fitness of all members of the population, regardless of
strategy.

Select the graph by clicking once anywhere in it and selecting Open Chart | Add Data. In
the dialog box that appears, enter the cell addresses E13– E24. Be sure to include the
label in cell E13, so that it will appear in the figure legend. Edit your graph for read-
ability. It should resemble Figure 5.

6. Calculate mean fitness
of a population consisting
entirely of Hawks.

7. Calculate mean fitness
of a population consisting
entirely of Doves.

8. Calculate mean fitness
of a population consisting
of the equilibrium mixture
of Hawks and Doves.

9. Add the data for popu-
lation fitness to your exist-
ing graph.

10. Answer questions 6
and 7 at the end of the
chapter.

Evolutionarily Stable Strategies and Group versus Individual Selection 507

Hawks vs. Doves: ESS?

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.2 0.4 0.6 0.8 1.0

Proportion of hawks in population

Doves
Hawks
Population

Figure 5



Conclusions
The upshot of this part of the exercise is strong support for individual selection. In every
case where group and individual selection hypotheses predict different outcomes, the
model produces the individual selection outcome.

One may argue, however, that this result does not prove that group selection cannot
occur, only that it does not operate in this model. On the other hand, it is clearly the case
that a pure population of Doves has the highest fitness in most scenarios, and yet Doves
are displaced by Hawks. The matter comes down to the problem of cheaters. If every-
one in the population “agrees” to behave as a Dove, the group as a whole will benefit.
But if anyone “cheats” on the pact, and behaves as a Hawk, he or she will reap greater
benefits than anyone behaving as a Dove. Hawkish behavior will spread through the
population, either by genetic heritage, or by other Doves defecting as they see cheaters
prospering. As the frequency of Hawks goes up, the fitness of each drops, because there
are fewer Doves left to exploit. Even so, it still pays better to be a Hawk than a Dove.
The result will be a population of Hawks, but each with lower fitness than he or she
would have enjoyed if only everyone had remained a Dove. The language of “agree-
ing” and “cheating” should be understood metaphorically; there need be no conscious
decision-making involved.

Another way to state the problem is in terms of individual interests versus group
interests. If the interests of the individual are opposed to the interests of the group, indi-
vidual interests are likely to dominate. Most evolutionary biologists are convinced that
group selection, if it operates at all, can have noticeable effects only under very narrowly
circumscribed conditions.

QUESTIONS

1. Is Dove an ESS against Hawk?

2. In the Introduction, we found the same answer without giving explicit values to
V, W, or T. We implied that Dove was not an ESS against Hawk with any val-
ues of V, W, or T, as long as all are greater than zero. Can you support this con-
clusion using your spreadsheet?

3. Is Hawk an ESS against Dove?

4. Are there values of V, W, and T that would make Hawk an ESS against Dove?

5. Can you find what relationship among these parameters is necessary to make
Hawk an ESS?

6. With the given parameter values, what is the equilibrium mixture of Hawks
and Doves?

7. What does this result imply about individual versus group selection? Is this
conclusion general, or does it depend on choosing parameter values carefully?
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