
Objectives

• Model two subpopulations that exchange individuals
through gene flow.

• Determine equilibrium allele frequencies as a result of gene
flow.

• Calculate H (heterozygosity) statistics for the population.
• Calculate F statistics for the population.
• Determine how H, F, and allele frequencies change over

time as a result of gene flow.

Suggested Preliminary Exercise: Hardy-Weinberg Equilibrium

22

INTRODUCTION
Think about a favorite plant or animal species, and consider how it is distributed
across the earth. Are the individuals all in one place, or are individuals scattered
in their distribution? Most of the earth’s species have distributions that are “patchy”
in some way. In other words, the greater population is subdivided into smaller
units or subpopulations. For example, a species of fish may have a subdivided dis-
tribution if individuals inhabit a number of different lakes. Similarly, maple forests
may be patchily distributed within a mosaic of farm land, resulting in a number
of subpopulations. Even dandelions in a lawn may have distinct patches to which
individuals belong. But does this “subdivision” in distribution suggest that the
species is made up of several “subpopulations,” each with an independent evo-
lutionary trajectory? Or does the species “behave” as a single, panmictic popula-
tion, where individuals can mix freely in spite of the patchiness? Or perhaps the
population is somewhat subdivided, where individuals from one location can mix
(breed) with individuals from other locations, but not as freely as a single pan-
mictic population because they are spatially separated from each other.

These questions concerning gene flow and population structure are important
from the perspectives of evolution, ecology, and conservation. A population is
“structured” if the individuals that make up the greater, overall population are
subdivided spatially, and hence random mating among individuals in the greater
population is limited. The degree to which populations are structured depends
in large part on the amount of gene flow— the migration of individuals between
subpopulations, with subsequent breeding—that takes place between the subdi-
vided populations (or subpopulations). If there is little or no gene flow, then each
subpopulation evolves independently of the other. In contrast, if there is substan-
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tial gene flow, the structure in the population breaks down because sufficient genetic
mixing has occurred. Gene flow is therefore a homogenizing force that causes allele fre-
quencies in subdivided populations to converge (Wilson and Bossert 1971).

Allele Frequencies in Subpopulations
Let’s consider gene locus A in two subpopulations. To keep things simple, we’ll assume
locus A exists in two forms, or alleles, A1 and A2. Let’s assume that subpopulation 1
has an A1 allele frequency, p1, of 0.7, while subpopulation 2 has an A1 allele frequency
of p2 = 0.2. Let’s now let the two subpopulations exchange individuals through migra-
tion, where m is the migration rate of individuals into a subpopulation. The individu-
als that make up the population that did not migrate in are called residents, and the
resident population is designated as 1 – m. If m > 0, then after a single generation of
mixing, p1 in subpopulation 1 will be changed; subpopulation 1 now consists of some
portion of individuals that remained within subpopulation 1, plus some portion of indi-
viduals that migrated from subpopulation 2 into subpopulation 1. Mathematically, the
new frequency of allele A1 is designated as p1′, and

Equation 1

Equation 1 says that the new frequency of allele A1 will have two components: (1 – m)p1,
which represents the proportion of subpopulation 1 that does not emigrate times the
frequency of A1 in subpopulation 1 before migration, and mp2, which represents the
proportion of immigrants from subpopulation 2 times the frequency of A1 in subpop-
ulation 2.

Equation 2

Substituting p1′ from Equation 1 into the Equation 2, we get

The p1s drop out of the equation, and we can factor out –m from the remaining terms
to get

Equation 3

Equation 3 says that a change in allele frequency of a recipient population (subpopu-
lation 1) due to migration is a function of the migration rate, as well as of the difference
in the allele frequency between the migrants and the recipient population. If the migra-
tion rates remain constant over time, eventually the two subpopulations will have
exactly the same allele frequencies (Figure 1; Wilson and Bossert 1971).

H and F Statistics
When two populations have reached the same allele frequencies, the larger population
will appear to be unstructured. Or is it? Structure depends not only on allele frequen-
cies but also how the A1 and A2 alleles are distributed among individuals. Therefore,
we must also consider genotype frequencies in the subpopulations.

In many species, especially animals, individuals carry two copies of  most genes, one
from each parent. Let’s assume that subpopulation 1 consists of 5 individuals with geno-
types A1A1, A1A1, A1A2, A2A2, A2A2, and that subpopulation 2 consists of 5 individuals
with genotypes A1A2, A1A2, A1A2, A1A2, A1A2. The  subpopulations have identical fre-
quencies of the A1 allele, p = 0.5, but the two subpopulations have quite different levels
of heterozygosity. Most of the individuals in subpopulation 1 are homozygotes—they
carry either two copies of A1 or two copies of A2; but the individuals in subpopulation
2 are heterozygotes and each of them carries one copy each of allele A1 and A2. So
allele frequency alone does not tell us everything about a population’s structure. The
level of structure depends on levels of heterozygosity in the subpopulations, as well as
the level of heterozygosity in the greater population. 

∆p m p p= − −( )1 2

∆p m p mp p p mp mp p= − + − = − + −( )1 1 2 1 1 1 2 1
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Why is heterozygosity used to estimate structure? And how is the degree of struc-
turing measured through heterozygosity statistics? Two measures are commonly used,
H and F (Hartl 2000).

H is a measure of heterozygosity; it is used to measure structure because individu-
als within subdivided populations are likely to inbreed due to small population sizes,
which typically results in decreased heterozygosity (see Exercise 41/24, “Inbreeding and
Outbreeding”). Thus, if there is no gene flow between subpopulations, each subpopu-
lation will (theoretically) have more homozygotes (A1A1 or A2A2) than predicted by
Hardy-Weinberg.

The statistic Hi measures the observed level of heterozygosity in a subpopulation For
example, 1 of 5 individuals in subpopulation 1 from our previous example were het-
erozygotes while 5/5 individuals in subpopulation 2 were heterozygotes. This measure
is averaged across subpopulations, and can be interpreted as the average heterozygos-
ity of an individual in a subpopulation, or the proportion of the genome that is het-
erozygous within an individual. For example, H for subpopulation 1 equals 1/5 = 0.2.
H for subpopulation 2 equals 5/5 = 1.0. The average of the two H scores = 0.6 = Hi.

The observed levels of heterozygosity in subpopulations are compared to two other
measures of heterozygosity, Hs and Ht. Hs is the expected level of heterozygosity in a sub-
population if the subpopulation is randomly mating as predicted by Hardy-Weinberg.
This measure is also averaged across subpopulations. Returning to our example, both
subpopulations have allele frequencies p = 0.5 and q = 0.5. If each subpopulation were
in Hardy-Weinberg equilibrium, we would expect the genotype frequency of het-
erozygotes to be 2 × 0.5 × 0.5 = 0.5. This number is averaged for the two subpopula-
tions to give us Hs: (0.5 + 0.5)/2 – 0.5. Thus, in our example, Hi = 0.6 and Hs = 0.5. This
means that the observed levels of heterozygotes are, on average, higher than what is
expected for a population in Hardy-Weinberg equilibrium.Ht is the expected level of
heterozygosity that should be observed in the subpopulations if the greater popula-
tion (subpopulation 1 and subpopulation 2) were really a single, randomly mating, pan-
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Figure 1 Two subpopulations with different initial frequencies of allele A1
exchange individuals at two different rates (the migration rate, m). As individuals
move between the two populations, the frequency of A1 in subpopulation 1
approaches that in subpopulation 2, and they eventually become equal. 



mictic population. If our subpopulations were really a single, panmictic population,
the expected genotype frequency of heterozygotes would be 2 × p × q, where p and q
are the averages of the subpopulation allele frequencies (Hartl, 2000). In out example,
p = q = 0.5 for both subpopulations, so the equation is 2 × 0.5 × 0.5 = 0.5.

The three H statistics are used to calculate F statistics, which are common measures
of population subdivision and inbreeding; F is sometimes referred to as the inbreeding
coefficient. The F statistics use the different H statistics to reveal different things about
population subdivision. Fis compares observed and expected heterozygosities within a
subpopulation. It is calculated as

Equation 4

and suggests the level of inbreeding at the subpopulation level. Thus, Fis is often called
the inbreeding coefficient within subpopulations. The numerator reveals how much the het-
erozygosity observed in the subpopulations differs, on average, from what is expected
from Hardy-Weinberg. For mathematical reasons, this difference is then “adjusted” by
the expected level.

When Hi is approximately the same as Hs, the deviation from Hardy-Weinberg is
small, and Fis is close to 0, suggesting that observed and expected levels of heterozy-
gosity within subpopulations are close in value. When Hi is much different than Hs, Fis
deviates from 0. When Fis is positive, fewer heterozygotes are observed in subpopula-
tions than predicted by Hardy-Weinberg. When Fis is negative, more heterozygotes are
observed in the subpopulation than predicted by Hardy-Weinberg. Fis is usually large
in self-fertilizing (inbred) species.

Fit also measures inbreeding, but is concerned with how individuals (Hi) deviate,
on average, from the heterozygosity of the larger population (Ht). It is calculated as

Equation 5

Thus, it calculates a level of inbreeding at the total population level. When Hi is similar to
Ht, the observed heterozygosities in subpopulations are close to what is predicted as
if the population were really a single large, panmictic population, and Fit is 0. When
Hi is much different than Ht, Fit deviates from 0. When Fit is positive, fewer heterozy-
gotes are observed in subpopulations than predicted by Hardy-Weinberg. When Fit is
negative, more heterozygotes are observed in the subpopulation than predicted by
Hardy-Weinberg. These differences can be caused by both inbreeding and by genetic
drift, both of which reduce heterozygosity in a subpopulation. Thus, Fit measures the
amount of inbreeding due to the combined effects of nonrandom mating within sub-
populations and to random genetic drift among subpopulations. 

Fst is a measure of nonrandom mating among or between subpopulations relative to the
total population, and hence this statistic is often used to indirectly measure the amount
of population subdivision. It is calculated as

Equation 6

Fst is a measure of the genetic differentiation of subpopulations and is always posi-
tive. The formula “compares” two expected values from Hardy-Weinberg calculations.
The numerator in the formula measures the difference in Ht (the average of the expected
heterozygosity in the total population) and Hs (Hs is the average expected heterozygos-
ity within the subpopulations). Fst is not concerned with individual subpopulations, so
it measures the reduction in heterozygosity due to factors other than inbreeding (such
as genetic drift). When population subdivision is great, the difference between the val-
ues in the numerator increases, Fst takes on a high value.
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PROCEDURES

The H and F statistics can be confusing until you sit down and work through the math.
The purpose of this exercise is to set up a model of two subpopulations of equal size
that interact through migration. You’ll enter observed genotype frequencies, then cal-
culate gene frequencies and how these frequencies change over time. You’ll also cal-
culate and interpret the H and F statistics as gene flow occurs between the two popu-
lations. As the simulation progresses, you’ll be able to see how the H and F statistics
change as the two subpopulations become homogenized, and you’ll interpret what the
statistics mean.

As always, save your work frequently to disk. 

ANNOTATION

We’ll consider a general model of gene flow and population structure that focuses on
a single locus, the A locus. We’ll start with two subpopulations, 1 and 2, that each
consist of N individuals; we designate N as 100 in cells C5 and C6. In this exercise, N
will be the same for both populations.

The migration rate, m, ranges between 0 and 1 and is the proportion of the population
that migrates from one subpopulation to the other. The value in cell D5 gives the migra-
tion rate into subpopulation 1 (from subpopulation 2). The value in cell D6 gives the
migration rate into subpopulation 2 (from subpopulation 1). To begin the exercise, we’ll
consider two subpopulations where the migration rate between them is 0. We’ll mod-
ify m later in the exercise. 

Enter =1-D5 in cell E5 and =1-D6 in cell E6.
The total subpopulation consists of migrants that move into the population plus the
residents that remain in the population, so the sum of m (the migration rate) and r (res-
ident population proportion) is equal to 1. 

For the purpose of this exercise, we’ll assume that you have the ability to determine
the genotype of each individual in the subpopulations, and can then calculate the
proportion of A1A1, A1A2, and A2A2 genotypes. The current values in cells F5–H6 indi-
cate that both subpopulations are in Hardy-Weinberg equilibrium. (Prove this to your-
self before you continue). You will be able to manipulate the observed genotype pro-
portions later in the exercise (i.e., you can model populations that are not in
Hardy-Weinberg equilibrium). 

INSTRUCTIONS

A. Set up the spread-
sheet.

1. Open a new spreadsheet
and set up headings as
shown in Figure 2.

2. Enter N and m subpop-
ulation parameters as
shown.

3. Enter a formula to cal-
culate the value of r (the
proportion of each sub-
population that are resi-
dents as opposed to
migrants).

4. Enter the observed
genotype frequencies for
each subpopulation in
cells F5–H6 as shown in
Figure 2.
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Enter the formula =SUM(F5:H5) in cell I5 and =SUM(F6:H6) for subpopulation 2. These
equations are used to ensure that the genotype frequencies for each subpopulation sum
to 1. If the frequencies don’t sum to 1, change the observed genotype frequencies so
that they sum to 1.

We’ll calculate the allele frequencies in our two subpopulations over a 50-generation
period. Year 0 will represent the initial conditions in terms of allele frequencies. 

Remember that a population of 100 individuals has 200 “gene copies” or “total alleles”
present. (Each individual has 2 copies). We just need to know how many of those are
A1 alleles, and how many are A2 alleles. Homozygote A1A1 individuals carry two of the
A1 alleles, and heterozygotes carry 1 A1 allele.
Enter the formula =(2*F5*C5+G5*C5)/(2*C5) in cell B13.
Enter the formula =1-B13 in cell C13.

Enter the formula =(2*F6*C6+G6*C6)/(2*C6) in cell E13.
Enter the formula =1-E13 in cell F13.

Remember that the frequencies in the next time step can be computed as 

We used the formula =$E$5*C13+$D$5*F13 in cell C14 to calculate the frequency of
the A2 allele, and then calculated A1 as 1 – q in cell B14 (=1-C14).
Make sure you understand the C14 formula. It says that the frequency of the A2 allele
in subpopulation 1 in year 1 depends on two factors: (1) the frequency of the A2 allele
in the resident population ($E$5*C13), and (2) frequency of the A2 allele in the immi-
grants ($D$5*F13). 

We used the formula =C14-C13. (You can make a delta symbol, ∆, by typing in a cap-
ital D, and then changing the font to Symbol.)

Enter the following formulae:
• E14 =1-F14
• F14 =$E$6*F13+$D$6*C13
• G14 =F14-F13

p m p mpt1 1 1 21, ( )+ = − +

5. Sum the genotype fre-
quencies for each subpop-
ulation in cells I5 and I6. 

6. Save your work.

B. Set up the general
model of gene flow.

1. Set up new headings as
shown in Figure 3.

2. Set up a linear series from
0 to 50 in cells A13–A63.

3. In cell B13 and C13,
enter formulae to calculate
the initial frequencies of
the A1 and A2 alleles in
subpopulation 1, respec-
tively.

4. In cells E13 and F13,
enter formulae to calculate
the starting frequencies of
the A1 and A2 alleles in
subpopulation 2. 

5. Enter formulae in cells
B14 and C14 to calculate
the allele frequencies of
subpopulation 1, given the
migration and resident
parameters.

6. Calculate the change in
the frequency of the A2
allele (∆A2) in cell D14. 

7. Calculate the allele fre-
quencies and change in the
A2 allele frequency in sub-
population 2 for year 1.

8. Select cells B14–G14 and
copy their formulae down
to row 63. 

9. Save your work.
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Use the line graph option and label your axes fully. Your graph should look something
like Figure 4. (We have graphed only the first 15 generations for clarity.)

We generated the graph in Figure 5 by changing the migration rate for subpopulation
1 from 0 to 0.2.

C. Make graphs.

1. Graph the frequency of
the A1 allele over time.

2. Change the migration
rate for your two popula-
tions (choose any rate
between 0 and 1), and con-
struct a new graph of
allele frequencies over
time.

3. Save your work, and
answer questions 1–3 at
the end of the exercise.

D. Calculate H and F
statistics.

1. Set up new headings as
shown in Figure 6.
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Enter the formula =AVERAGE($G$5:$G$6) in cell H13.
Hi is the average observed heterozygosity within a total population. Thus, we take

the average of cells G5 and G6, which are the frequencies of heterozygotes in sub-
poplation 1 and subpopulation 2. Keep in mind that by making cells G5–G6 absolute
references, you are forcing the heterozygote proportions to remain constant over
time—this will affect the calculation of F statistics later in the exercise. 

Enter the formula  =AVERAGE(2*B13*C13,2*E13*F13) in cell I13.
Hs is the average expected heterozygosity within the subpopulations. Cell B13 and C13
give the frequency of the A1 (p) and A2 (q) allele in subpopulation 1. Cells E13 and F13
give the frequency of the A1 (p) and A2 (q) allele for subpopulation 2. The Hardy-Wein-
berg principle tells us that, for each subpopulation, the expected heterozygote frequency
is 2 × p × q. The formula in I13 tells Excel to multiply 2 × p × q for subpopulation 1, then
multiply 2 × p × q for subpopulation 2, and finally to average these two values together. 

Enter the formula =2*AVERAGE(B13,E13)*AVERAGE(C13,F13) in cell J13.
Ht is the average of the expected heterozygosity in the total population. Ht is similar
to Hs, but it’s the average expected heterozygosity for the population at large. There-
fore, first we calculate an overall p, then an overall q, and then multiply by 2. The result
tells us what heterozygosity should be if the two subpopulations were one panmictic
population. 

Enter the formula =(I13-H13)/I13 in cell K13.
Now that we have the H statistics calculated, the F statistics are fairly straightfor-
ward. The F statistics compare the different levels of heterozygosities to reveal how the
population is structured. All three F statistics (Fis, Fit, Fst) have Ht or Hs as the denomi-
nator, which “adjusts” for the expected level of heterozygosity if the population were
a single randomly mating, panmictic population (Ht) or randomly mating subdivided
populations (Hs). 

Fis measures of the deviation from Hardy-Weinberg heterozygote proportions within
subpopulations (or the deviation of Hi from Hs). Remember that Fis also called the
inbreeding coefficient because it measures the decrease in heterozygosity within a sub-
population (due to inbreeding). The numerator in the equation Fis = (Hs – Hi) / Hs
thus reveals the difference between the actual, observed heterozygosities in the sub-
populations (Hi) and the expected heterozygosities if the subpopulations were in Hardy-
Weinberg equilibrium (Hs). When Hi is approximately the same as Hs, the deviation
from Hardy-Weinberg is small, and Fis is close to 0. When Hi is much different than
Hs, Fis deviates from 0. When Fis is positive, fewer heterozygotes are observed in sub-
populations than predicted by Hardy-Weinberg. When Fis is negative, more heterozy-
gotes are observed in the subpopulation than predicted by Hardy-Weinberg. 

Enter the formula =(J13-H13)/J13 in cell L13.
Fit measures the total inbreeding coefficient. It measures the deviations of observed het-
erozygosities within subpopulations from Hardy-Weinberg proportions of the total
population (or the deviation of Hi from Ht). The equation for calculating Fit is Fit = 
(Ht – Hi)/Ht. When Hi is similar to Ht, the observed heterozygosities in subpopulations
are close to what is predicted as if the population were really one large, panmictic pop-
ulation, and Fit is 0. Thus, Fit measures the amount of inbreeding due to the combined
effects of nonrandom mating within subpopulation and to random genetic drift among
subpopulations. When Hi is much different than Ht, Fit deviates from 0. When Fit is pos-
itive, fewer heterozygotes are observed in subpopulations than predicted by Hardy-
Weinberg. When Fit is negative, more heterozygotes are observed in the subpopulation
than predicted by Hardy-Weinberg.

2. In cell H13, enter a for-
mula to calculate Hi.

3. In cell I13, enter a for-
mula to calculate Hs.

4. In cell J13, enter a for-
mula to calculate Ht.

5. In cell K13, enter a for-
mula to calculate Fis.

6. In cell L13, enter a for-
mula to calculate Fit.
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Enter the formula =(J13-I13)/J13 in cell M13.
Fst is a measure of the genetic differentiation of subpopulations and is always posi-
tive. The formula “compares” two expected values from Hardy-Weinberg calculations.
The numerator in the formula Fst = (Ht – Hs)/Ht measures the difference in Ht (the aver-
age of the expected heterozygosity in the total population) and Hs (Hs is the average
expected heterozygosity within the subpopulations). Thus, Fst is the amount of “inbreed-
ing” due solely to population subdivision (i.e., due to genetic drift). When inbreeding
due to subdivision is great, the difference between the values in the numerator increases,
and Fst takes on a high value. 

At this time, you might want to play around with your model parameters and con-
template the meaning of the H and F statistics in Generation 0. Then consider the sta-
tistics as gene flow occurs in subsequent generations.

Interpret your graph. Your graph should resemble Figure 7.

Your graph should resemble Figure 8. Interpret your graph.

7. In cell M13, enter a for-
mula to calculate Fst.

8. Select cells H13–M13,
and copy their formulae
down to row 63.

9. Save your work.

E. Create graphs. 

1. Set the migration rate to
0, and graph the H statis-
tics and allele frequencies
as a function of time. Use
the line graph option and
label your axes fully.

2. Graph the F statistics
and allele frequencies as a
function of time.

3. Save your work.

Gene Flow and Population Structure 295

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 2 4 6 8 10 12 14 16 18 20

Generation

V
al

u
e

A1 - Subpop 1 A1 - Subpop 2 Hi Ht Hs

Figure 7

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

0 2 4 6 8 10 12 14 16 18 20

Generation

V
al

u
e

A1 - Subpop 1 A2 - Subpop 2 Fis Fst Fit

Figure 8



QUESTIONS

1.Enter the following values in your spreadsheet:

Change cell D5 by increments of 0.1. What is the equilibrium allele frequencies
for subdivided populations with gene flow? How does changing m determine
the point in time is equilibrium reached? 

2. How do allele frequencies change in the two populations in an island model
(gene flow is uni-directional) compared to a general model in which gene flow
is bi-directional? Set m for subpopulation 1 to 0 to indicate that subpopulation 1
is a mainland that sends out emigrants but does not receive immigrants. Set m
= 0.5 for subpopulation 2 to indicate that subpopulation 2 is an island that
receives immigrants from subpopulation 1. Graph your results. Then change m
for subpopulation 1 from 0 to 1 in increments of 0.1. How do the two models
compare? How do your results change if m for subpopulation 2 is changed?

3. What determines the amount of time to reach equilibrium frequencies in subdi-
vided populations that have gene flow? Set up population genotypes as shown.

The allele frequencies for the subpopulations are p = 0.91 for subpopulation 1
and p = 0.09 for subpopulation 2. Keeping m fixed at 0.1 for both subpopula-
tions, change the intial genotype frequencies (the allele frequencies will also be
altered). How does change in initial genotype frequency (and allele frequency)
affect the amount of time until equilibrium is achieved? 

Return your spreadsheet to its initial settings (Figure 2) and continue to Part D
in the exercise.

4. Set m to 0 in both subpopulations, and enter genotype frequencies in cells
F5–H6 so that both subpopulations are in Hardy-Weinberg equilibrium, and
have identical allele frequencies. (In the exercise both subpopulations were in
Hardy-Weinberg equilbrium and had different allele frequencies within them.)
How does this change affect the H and F statistics? Graph the results and fully
interpret the meaning of the H and F statistics. 

296 Exercise 22

3

4

5

6

A B C D E F G H

N m r A1A1 A1A2 A2A2

Subpopulation 1: 100 0 1 0.25 0.5 0.25

Subpopulation 2: 100 0 1 0.09 0.42 0.49

Parameters Genotype frequencies

3

4

5

6

A B C D E F G H

N m r A1A1 A1A2 A2A2

Subpopulation 1: 100 0.1 0.9 0.83 0.16 0.01

Subpopulation 2: 100 0.1 0.9 0.01 0.16 0.83

Parameters Genotype frequencies



5. Set m as 0 values for both subpopulations, then enter genotype frequencies in
cells F5–H6 so that at least one subpopulation is out of Hardy-Weinberg equilib-
rium. For example, you might enter values as shown: 

How do H and F statistics reflect structure? How did Fis change? Is it positive or
negative? Is it large or small? Explain why you obtained the Fis value that you
did. What does this tell you about the populations? (Remember that the geno-
type frequencies will remain out of Hardy-Weinberg equilibrium over time
because of the formula entered in cell H13.) 

6. For this question, you will ignore the genotype frequencies given in rows 5 and
6, and directly enter the initial allele frequencies for subpopulations in cells
B13–F13. (We’ll assume the genotypes are in Hardy-Weinberg proportions.)
Start with p = 0.6 for subpopulation 1 and p = 0.5 for subpopulation 2. Record
the F statistics for that generation. Then let p = 0.8 in supopulation 1 and p = 0.2
in subpopulation 2, and record the F statistics. Then let p = 0.9 in subpopulation
1 and subpopulation 2, and record the F statistics. How did the F statistics
change as the two subpopulations became more differentiated (allele frequen-
cies diverged)? Which F statistic changed the most? Why? 
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3

4

5

6

A B C D E F G H

N m r A1A1 A1A2 A2A2

Subpopulation 1: 100 0 1 0.5 0 0.5

Subpopulation 2: 100 0 1 0.04 0.32 0.64

Parameters Genotype frequencies




