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Abstract

With the rapid increase in production of genetic data from new sequencing technologies,

a myriad of new ways to study genomic patterns in nonmodel organisms are currently

possible. Because genome assembly still remains a complicated procedure, and because

the functional role of much of the genome is unclear, focusing on SNP genotyping from

expressed sequences provides a cost-effective way to reduce complexity while still

retaining functionally relevant information. This review summarizes current methods,

identifies ways that using expressed sequence data benefits population genomic infer-

ence and explores how current practitioners evaluate and overcome challenges that are

commonly encountered. We focus particularly on the additional power of functional

analysis provided by expressed sequence data and how these analyses push beyond

allele pattern data available from nonfunction genomic approaches. The massive data

sets generated by these approaches create opportunities and problems as well – espe-

cially false positives. We discuss methods available to validate results from expressed

SNP genotyping assays, new approaches that sidestep use of mRNA and review follow-

up experiments that can focus on evolutionary mechanisms acting across the genome.
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Introduction

We currently live in what has been dubbed ‘the golden

age of DNA sequencing’. New high-throughput sequenc-

ing technologies promise to continue to make DNA

sequencing cheaper and easier: DNA sequence costs have

dropped five orders of magnitude in the last 10 years. In

combination with increased capacity of computing infra-

structures, this has allowed researchers in the fields of

molecular ecology and population genetics to upgrade

analysis methods in a myriad of different ways. How-

ever, there are numerous pitfalls within these methods

that need to be taken into account in order to avoid draw-

ing false conclusions from massive high-throughput

sequence data sets. Using large data sets to find and test

genes with particular evolutionary patterns is both the

promise and the challenge of these new tools.

Particularly, genome/transcriptome assemblies are

often incomplete, poorly annotated and can contain

large fractions of chimaeric sequences (Cahais et al.

2012). Also, error rates in sequencing machines, while

usually low (Ross et al. 2013), can still be a nuisance

when the output is extremely high (e.g. the Illumina

HiSeq 2500 currently outputs 1000 Gb in a single run).

In addition to these technical issues, there are also bio-

logical problems to consider, such as recent gene dupli-

cation events, genomic repeat regions and high

polymorphism rates, that complicate assembly.
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One way of reducing the complexity of genomes in

order to facilitate population genomic analyses, espe-

cially in nonmodel systems, is to focus on expressed

sequences (Wang et al. 2009; Gayral et al. 2013). A focus

on expressed genes not only reduces the complexity

substantially, but also allows for greater accuracy of

functional annotation than in reduced representation of

genomic DNA libraries. In addition, due to the nature

of data from coding genes, there are a number of qual-

ity-control steps that are highly useful for trying to dis-

tinguish biological patterns from technical artefacts.

These advantages allow the basic raw data of SNP

analysis to be tested against neutral expectations at a

series of levels beyond typical outlier approaches.

Expressed sequences can be targeted in several ways. A

direct approach is to create libraries from mRNA tran-

scribed by individuals in a population and sequence the

full transcriptome using RNA-Seq or other sequencing

approaches. A second is to use exome capture, in which

regions of expressed genes are synthesized as oligonucleo-

tides, attached to beads or other substrates, and used to

capture short DNA regions that are homologous to the oli-

gos (Teer & Mullikin 2010; Stillman & Armstrong 2015).

Such capture libraries have been printed on arrays for

analysis of human polymorphisms because the vast major-

ity of human genetic variants with large disease effects are

in the 1% of the genome that is coding (Choi et al. 2009).

Unfortunately, development of exome capture arrays

is expensive for nonmodel species and requires substan-

tial processing of each individual DNA sample. An

emerging alternative is to use genomic DNA sequenc-

ing at low genome coverage (1–29) and take advantage

of sensitive mapping routines and a transcriptome

assembly to sift out the expressed sequence regions

(e.g. Doyle et al. 2014).

In this review, we attempt to summarize current

methods for SNP marker development and genotyping

using RNA sequencing, although the principles apply

to any source of expressed sequence genotype data.

Furthermore, we review how these SNPs are currently

used within the field of population genomics and

molecular ecology. We try to identify some of the major

issues that complicate analysis and potential ways to

overcome them. We devote particular attention to the

power of expressed sequence data and the ways they

can be used to evaluate inferences of SNP genotype

data and allele frequency variation.

Assembly quality

Sequencing from mRNA samples generates a wealth of

short DNA sequence reads from random places in the

transcriptome. As a result, one of the key issues of SNP

marker development from genomic/transcriptomic data

is the quality of the reference assembly against which

these reads are compared (see e.g. Grabherr et al. 2011;

Cahais et al. 2012). The ideal transcriptome assembly for

population genomic or comparative genomic analyses

has one representative, complete sequence for each

gene, that is isoforms and allelic variants have a single

sequence representative, while gene families and recent

gene duplications are maintained as separate sequences

(unless the specific goal of a project is to study splice

variation-related issues). Attaining this goal has a num-

ber of bioinformatic and biological challenges. In this

section, we discuss these challenges and review

approaches for evaluating transcriptome assembly.

Using data from several comparative studies, we also

aggregate a ‘best practice’ pipeline for assembly crea-

tion and evaluation to optimize a reference transcrip-

tome for SNP marker quality.

Transcriptome challenges and solutions

Biological complexity and technical challenges can result

in errors that clutter a transcriptome assembly, reducing

the proportion of complete gene sequences. Examples of

biological complexity that can challenge the reconstruc-

tion of gene sequences include gene duplications, allelic

variants, alternative splicing and stochastic changes in

expression (‘transcriptional noise’) (Huh & Paulson

2010). Examples of technical and computational inaccura-

cies include sequencing errors and the fusion of the ends

of two transcripts to form a chimaera artefact (see Box 1).

All together, a large proportion of contigs from an unfil-

tered initial transcriptome assembly may be composed of

sequences that are DNA contamination, incomplete gene

fragments, chimaeras, splice and allelic variants consid-

ered as two separate gene sequences, and recent gene

duplications mistaken to be one gene sequence (see Ca-

hais et al. (2012): fig. 6; see Box 1).

Fortunately, many of these errors can be identified by

working with contigs that have predicted open reading

frames (ORFs). ORF prediction can be carried out easily

with publically available programs (e.g. STARORF (http://

star.mit.edu/orf/), ORF FINDER (http://www.ncbi.nlm.-

nih.gov/gorf/gorf.html) or TransDecoder.pl (distributed

with the TRINITY assembly software)) that recognize start

and stop codons and nonsense sequence. For organisms

that have recently undergone full-genome duplication

events, such as for many plants, the program FINDORF

has been developed that can help simultaneously disen-

tangle homologues and predict ORFs (Krasileva et al.

2013). ORF prediction goes a long way to excluding

DNA contamination, incomplete sequence fragments,

sequencing errors that result in frame shifts and false

stop codons, and some chimaeras. This approach will

tend to de-emphasize the 30 UTRs of mRNA, which do
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not have open reading frames. As a result, high-quality

mRNA preparations are needed so that full-length cod-

ing gene regions can be assembled. Availability and

processing high-quality mRNAs can be a major road-

block to using expressed gene approaches, although

recent development of DNA-based methods of exome

capture is relieving this problem.

The downstream effects of misassembled transcripts

are creation of many false SNPs when paralogous

sequence changes are mistaken for polymorphisms and

the discarding of true SNPs when allelic differences are

treated as two separate genes rather than one. Members

of a paralogous gene family can be mistakenly col-

lapsed into a single representative contig. These errors

occur during assembly due to the blending of reads

from similar transcripts into a single sequence. Such

errors can sometimes be identified using results from a

tBLASTn search, querying translated assembly contigs

against a high-quality protein database from a closely

related species. This reverse annotation process will

reveal erroneously collapsed contigs when multiple or-

thologous proteins from the reference match a single

collapsed contig (O’Neil & Emrich 2013: fig. 4).

From tBLASTn results, one can also calculate another

metric of assembly quality, the ‘collapse factor’, which is

simply the mean number of reference proteins that match

each contig. Rather than 1:1 orthologous matches

between reference and new transcriptomes, there may be

several paralogous reference protein sequences that

match a single contig of erroneously collapsed paralogs.

Barring true differences in paralog numbers between the

new and reference genomes, a better assembly will have

a collapse factor near 1, while poorer assemblies will have

larger collapse factors (O’Neil & Emrich 2013). A number

of publically available scripts have been developed to cal-

culate such transcriptome quality metrics (including

within TRANSRATE v0.2.0 (Smith-Unna et al. 2014) and in

the Galaxy pipeline associated with Cahais et al. (2012)).

However, in the absence of a high-quality reference

resource, these potential effects on downstream analy-

ses suggest that erring on the conservative side of

assembly, that is keeping allelic variants as separate

‘genes’ rather than potentially collapsing paralogs,

would reduce the number of potential false positives at

the expense of increasing potential false negatives.

Other assembly errors, such as chimeras, should not

affect variant detection for the purposes of downstream

population genomic analyses, although they will affect

transcriptome accuracy and gene annotation.

How to evaluate transcriptome assemblies

A number of computational approaches have been devel-

oped for evaluating the accuracy and completeness of

transcriptome assemblies. Variation between assemblies

due to differences in assembler algorithms or assembly

parameters can be measured quantitatively through mea-

sures of contiguity, such as median contig length, the

number of contigs and N50 (see Box 2). However, the

correctness of an assembly does not correlate well with

statistics of contiguity (Salzberg et al. 2012). Beyond

quantitative metrics of contiguity, there are important

qualitative measurements that require comparisons to a

reference transcriptome of a closely related species (<10%
sequence divergence (Vijay et al. 2013)) or to curated da-

tabases such as SWISSPROT (www.uniprot.org) or core con-

served genes in eukaryotic genomes (eukaryotic

orthologous groups, COGs (Tatusov et al. 2003; Parra

et al. 2007)). A commonly used strategy to estimate the

quality and completeness of an assembly is based on

BLAST hits to public databases such as UNIPROT

(www.uniprot.org). Although, as expected, this approach

can be limited for nonmodel organisms that are not well

represented in such databases (Feldmeyer et al. 2011),

there are also several publically available packages that

incorporate both quantitative and qualitative measures of

transcriptome quality (TRANSRATE [http://hibberd-

lab.com/transrate/], MRNAMARKUP [https://github.com/

BrendelGroup/mRNAmarkup], or the Galaxy pipeline

from Cahais et al. [http://kimura.univ-montp2.fr/

Box 1. Types of errors in transcriptome assemblies

Chimaera – Erroneous fusion of the ends of two sepa-

rate transcripts can be detected with BLAST results

when two or more nonoverlapping regions of one

transcript match different reference transcripts.

Allele – Genetic variant, sequence differences at the

same position in a chromosome. Allelic variants can

be erroneously assembled as separate transcripts.

Isoform – Transcript variant in the expression of a

gene often due to alternative splicing of exons. Alter-

native spliced isoforms can be erroneously assem-

bled as separate transcripts.

Paralog – Paralogs, separate transcripts related by an

historical gene duplication event, can erroneously be

assembled as one transcript, can be detected by mul-

tiple protein sequences from a reference assembly

matching one contig and can be revealed through

collapse factor calculation (see Box 2).

Fragment – A partial, incomplete transcript sequence.

Fragments can dominate assemblies due to degrada-

tion of the 30 ends of mRNA prior to library prepara-

tion or poor assembly.

rRNA – ribosomal RNA, highly abundant RNA that

can contaminate sequencing libraries, reads and

assemblies.
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PopPhyl/resources/datasets/popphyl-galaxy.tar.gz]). In

Box 2, we list different evaluation methods for assembly

quality.

‘Best practice’ transcriptome assembly guidelines
suggested by current literature

There are a number of choices that can affect assembly

quality and, therefore, SNP marker development: how

much to sequence, what tissues or developmental

stages to sequence from, what type of sequencing plat-

form to use, how to process sequence data before

assembly, which assembler to use and how to optimize

parameters and finally, how to process and evaluate

assemblies. Fortunately, a number of comparative stud-

ies have been performed to generate recommendations.

Here, we summarize these ‘rules of thumb’ that have

been generated to date.

A recent study by Francis et al. (2013) addressed the

question of optimal sequencing depth to maximize cov-

erage for de novo transcriptome assembly in nonmodel

organisms. Using regular increments of read counts

from sequence data from animal taxa across six differ-

ent phyla, they identified 30–60 M reads as the range

beyond which the discovery of new genes diminishes

and the fraction of sequencing errors in highly

expressed genes accumulates. They also used sequence

data from mouse heart tissue to be able to compare

results to a reference genome. For all seven organisms,

BLAST comparisons to conserved orthologs showed

that the discovery of additional conserved eukaryotic

orthologous genes (COGs) diminished beyond 30 mil-

lion reads (see Francis et al. (2013); figs 4–5). Interest-

ingly, the same optimal range of 30–60 M reads for

transcriptome assembly was identified using sequence

data from human cell cultures and mouse tissue in the

study introducing the OASES assembler (Schulz et al.

2012). Vijay et al. (2013) also make a recommendation

regarding coverage of 100 M reads or 500–8009 cover-

age for optimal assembly considering the effects on

downstream gene expression analyses (Vijay et al.

2013).

Regarding starting material, in general, Francis et al.

(2013) found that having multiple tissues or RNA

extracted from whole animals recovered more tran-

scripts and discovered more conserved genes with less

sequencing effort. Sequencing from multiple develop-

mental stages has been an important strategy for maxi-

mizing exon coverage as well as complete transcript

recovery (Vera et al. 2008). The logic behind this is that

most genes are alternatively spliced (Wang et al. 2008),

exon skipping is a major type of alternative splicing

(Sultan et al. 2008), and exon usage varies substantially

depending on the tissue or cell type in which a gene is

expressed (Sultan et al. 2008; Wang et al. 2008). As a

result, sampling across multiple developmental stages

captures variation in isoform expression. Fortunately,

for transcriptome assembly, the TRINITY assembler clus-

ters putative isoform variants as ‘comps’ or components

with different isoform numbers (Grabherr et al. 2011).

Components as putative isoform variants can be further

collapsed based on sequence similarity using the pro-

gram CD-HIT-EST (Li & Godzik 2006). There is, however,

a risk here of accidentally collapsing paralogous tran-

scripts while collapsing the intended isoform variants.

The erroneous collapse of paralogs should be assayed

using reverse annotation with a protein database of a

closely related species as described above. Another

method allowing for identification of paralogs is con-

struction of phylogenetic trees of gene families using

known sequences from closely related species as out-

groups (e.g. Remm et al. 2001). This method has the

advantage of taking into account the rate of sequence

evolution within the gene family of interest, rather than

relying on universal estimators of sequence similarity.

Another important consideration is the number of

individuals from which to sequence for a de novo

assembly. In general, sequencing from fewer individu-

als will reduce the probability of SNP or isoform

Box 2. Metrics for evaluating transcriptome quality

N50 – the length of the contig such that 50% of the

sequences in the assembly are longer than the central

N50 contig; this metric gives greater weight to longer

contigs compared to mean and median contig length.

Recovery or Completeness – If a reference transcriptom-

e is available, recovery or completeness can be calcu-

lated as the proportion of bases recovered from the

reference transcriptome in the new assembly.

Accuracy – If a reference transcriptome is available,

accuracy can be calculated as the proportion of bases

correctly matched to orthologous genes between the

reference and the new assembly.

Collapse factor – If a transcriptome sequence from a

closely related species is available, the collapse factor

can be calculated to compare the mean number of

reference orthologs that match each contig to evalu-

ate different assemblies. Numbers greater than one

suggest the erroneous collapse of paralogous tran-

scripts from a gene family into a single contig.

Ortholog – Genes from two different species that

share a common ancestral gene, separated by the

event of speciation. Function is normally conserved.

Databases of conserved eukaryotic orthologous genes

(COGs) can be used to evaluate the completeness of

a transcriptome assembly.
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variants of a single gene among individuals resulting in

the erroneous separation of contigs. However, consider-

ing the above recommendation to sequence from across

a range of developmental stages/sexes/tissues/physio-

logical states to capture transcripts expressed at various

conditions requires sampling multiple individuals for

study organisms that are not clonal. Therefore, there

must be a balance to maximize transcriptome coverage

while minimizing the potential of variants that may

incorporate error into the assembly. This category of

errors, however, may be reduced using preassembly

read processing algorithms such as KHMER (Crusoe et al.

2014), may be captured as ‘comps’ in a TRINITY assembly

(Grabherr et al. 2011) or can be detected via alignments

to reference databases postassembly (Cahais et al. 2012).

An important consideration in this respect will be the

overall goal of the particular study. In many population

genomic studies, for example, the ultimate goal is a

comparison of transcripts present in all (or a significant

fraction of) samples (e.g. Chen et al. 2010). As the inclu-

sion of less common transcripts will also increase the

amount of sample-specific transcripts, this might in

these cases be a wasted effort. If, however, the ultimate

goal is to create an as-complete-as-possible resource for

a larger community, one would want to take care to

include even less common transcripts.

There are a number of high-throughput sequencing

platforms and assembly strategies that can be

employed. Intuitively, longer, paired reads and the

incorporation of long-read data from technologies such

as PacBio (although PacBio error rates to date are high

(up to 20% on a single pass) so error correction is in

most cases necessary prior to inclusion in assembly, for

example using Illumina short-read data) improve

assembly quality and completeness, and result in longer

transcripts (Martin & Wang 2011; Cahais et al. 2012; Ko-

ren et al. 2012). Cahais et al. (2012) use 454 and 100-bp

single-end Illumina sequence data individually and

combined from five diverse nonmodel taxa to test the

effect of these individual vs. combined data types on

assembly quality. They find that the combined data per-

form slightly better than Illumina single-end, long-read

alone and those performed much better than 454 alone

(Vijay et al. 2013). Although not tested by Vijay et al.

(2013), it could be that Illumina paired-end long-read

data would outperform the assemblies from combined

454 and Illumina single-end long-read data. Vijay et al.

(2013) also showed improved performance with map-

ping assemblies to a closely related sister species (<10%
sequence divergence) compared to de novo assemblies.

Results from genome and transcriptome assembly stud-

ies generally support hybrid assembly techniques, com-

bining different sequencing platforms such as Illumina

and PacBio (Koren et al. 2012; Utturkar et al. 2014).

Additionally, assemblers tend to perform better if they

incorporate information on the sense vs. antisense ori-

entation of the RNA-Seq data; TRINITY is one assembler

that does resolve and incorporate strand-specific RNA-

Seq data (Haas et al. 2014).

The typical strategies for processing raw sequence

data before assemblies involve removing sequencing

adapters and low-quality reads and trimming low-qual-

ity regions of reads. However, relatively little consider-

ation has been given to excluding sequencing errors

prior to transcriptome assembly from RNA-Seq data

(Macmanes & Eisen 2013). This is an important consid-

eration because Illumina sequence data generally have

error rates of 1:1000 to 1:10000, primarily substitutions,

in a nonrandom distribution, increasing from the 50 to
the 30 end (Yang et al. 2010; Liu et al. 2014). Macmanes

& Eisen (2013) implement the error correction program

REPTILE (Yang et al. 2010) on modelled and empirical

data and find that while error correction does not

affect assembly contiguity, there is a 10% reduction in

errors incorporated into transcripts (Macmanes & Eisen

2013). This reduction in the number of substitution

errors is particularly important in population genomic

studies aimed at SNP marker development. Processing

raw sequence data prior to assembly with REPTILE

should reduce the identification of many false-positive

SNPs.

Another approach that results in the reduction of

sequencing errors is digital normalization of sequence

data to remove high-coverage sequence reads (Brown

et al. 2012). This k-mer base process, implemented in

the program KHMER, removes high-coverage reads to a

specified level, reducing sampling variation, and

thereby removing many of the sequence errors con-

tained in these high-coverage reads (Brown et al.

2012). This process reduces the data set size to one-

tenth of the original size and therefore reduces assem-

bly time by 90% with negligible affects on the contigu-

ity of assemblies (see Brown et al. (2012); table 5).

However, the effect of digital normalization on quali-

tative measurements of assembly such as per cent of

conserved orthologs identified has not yet been

reported. It is also possible to normalize RNA-Seq

libraries before sequencing, in order to increase the

representation of lowly expressed transcripts. Depend-

ing on the goal of the project, this could potentially

be useful. In cases where a complete assembly or

development of markers in lowly expressed sequences

is the goal, normalization can be beneficial. However,

it is important to remember that the normalized

library no longer contains quantitative information

about transcript abundance postnormalization, which

makes assessment of expression levels or allele-specific

expression impossible.
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Postassembly, Cahais et al. (2012) show that filtering

contigs based on coverage and length improves the

accuracy (per cent of correct predictions, see fig. 7) and

the proportion of full-length transcripts and fragments

relative to erroneous transcripts (see fig. 6) although at

the expense of raw numbers of transcripts (Cahais et al.

2012). A recommendation that balances the number of

retained contigs and excluded errors is to filter contigs

based on an average 49 coverage and a minimum

length of 600 bp (Cahais et al. 2012).

Summarizing current literature, it is possible to iden-

tify a ‘best practice’ pipeline from experimental design,

to platform choice, to raw data processing, to assembler

choice and to transcriptome assembly processing and

evaluation (Fig 1).

RNA sampling and sequencing. To maximize gene cover-

age of a new transcriptome assembly within the bounds

of diminishing returns, the most effective way seems to

be to sample RNA from a breadth of developmental

stages and tissues, to prepare non-normalized, strand-

specific (Borodina et al. 2011) RNA-Seq libraries and to

pool and sequence these libraries on one-quarter to one-

half of one Illumina HiSeq 2000 or 2500 lane to generate

~30–100 million paired-end, long (100 bp) reads.

Data types and normalization. Paired-end long-read

sequence data are most effectively used for creating a

reference transcriptome assembly. Additional, longer

sequence data can be generated with Ion Torrent or

PacBio platforms for the transcriptome assembly (after

Fig. 1 Flowchart of a ‘best practice’ pipe-

line for transcriptome assembly and eval-

uation, as suggested by a current

literature review.
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error corrections). There are methods for hybrid assem-

blies combining data from different platforms (Lunter

& Goodson 2011; Koren et al. 2012; Vijay et al. 2013;

Utturkar et al. 2014) or even de novo assembly with Ion

Torrent data using TRINITY and OASES (Amin et al. 2014).

However, these platforms are not as readily available

and assemblers, including TRINITY, have been developed

and optimized targeting Illumina read data. To reduce

the incorporation of sequencing errors and potential

false-positive SNP identification, current experience

recommends processing raw sequence data for quality

as well as errors using the program REPTILE (Yang et al.

2010) and then digitally normalizing the data using the

program KHMER (Crusoe et al. 2014), which is now

packaged with the latest version of TRINITY (v.

20140717). These cleaned, paired-end long-read Illu-

mina data can then ideally be assembled using TRINITY

because of the ability to resolve splice isoforms and

gene paralogs (Grabherr et al. 2011). This works well

with the ultimate goal of a single transcript for each

gene for population genomic SNP marker develop-

ment.

Contig evaluation and pruning. Postassembly, a current

literature review suggests pruning for coverage (49),

read length (600 bp) and predicting open reading

frames (ORFs, e.g. TransDecoder.pl, also packaged with

the latest version of TRINITY) to remove or reduce DNA

contamination, noncoding RNA, chimaeras and gene

fragments. These postassembly processing steps should

be adjusted and tested for each new species. With the

goal of maximizing the discovery of new genes to the

exclusion of erroneous transcripts, each assembly itera-

tion can be evaluated through BLAST comparisons to a

closely related species and measuring completeness, as

well as identifying and excluding or correcting errors

such as chimaeras, collapsed paralogs, and separated

isoforms or allelic variants (Cahais et al. 2012). Barring a

reference transcriptome or genome of a closely related

species, assembly completeness can be estimated by

searching for conserved eukaryotic orthologous genes

(COGs) using the complete NCBI database (Tatusov et al.

2003) or the more restricted data set of 248 single-copy

COGs using the CEGMA program (Parra et al. 2007).

Finally, assemblies can be further evaluated with pack-

ages such as TRANSRATE and/or MRNAMARKUP (http://hib-

berdlab.com/transrate/; https://github.com/Brendel

Group/mRNAmarkup).

Marker development and genotyping

Examining the current literature of this field, it is clear

that most studies concerned with SNP marker develop-

ment from transcriptomic data are based on agricul-

ture/aquaculture efforts or for conservation genetics

(e.g. Bai et al. 2011; Ashrafi et al. 2012; Helyar et al.

2012; Gallardo-Esc�arate et al. 2013; Montes et al. 2013;

Pootakham et al. 2013; Valenzuela-Mu~noz et al. 2013;

Cui et al. 2014). However, more and more data are

being generated for natural populations with the goal

of identifying differences in population structure or tar-

gets of selection acting among populations or individu-

als (Bay & Palumbi 2014).

SNP detection

It is relatively easy to acquire a list of candidate poly-

morphic loci from RNA-Seq data by first aligning the

short reads to a reference, then using software such as

SAMtools (http://www.htslib.org/) (Li et al. 2009) or

GATK (https://www.broadinstitute.org/gatk/) (McKen-

na et al. 2010) to search for consistent patterns of

sequence variation and filter out dubious variants. Key

parameters when filtering include sequencing depth

(coverage), depth of reads with the nonreference allele,

sequence quality scores, proximity to other SNP/InDel

sites and strand bias. Sequencing errors can usually be

reduced as a first step by eliminating SNPs with very

low frequencies (it is also of course possible to start

with a set of genes of interest and search for SNPs in

those rather than using a blind shotgun approach, see

e.g. Livaja et al. (2013)).

More problematic are artefacts caused by alignment

errors due to InDels or multiple gene copies that have

incorrectly been grouped together as one contig in an

assembly. InDels are particularly troublesome in high-

diversity species with large population sizes, for exam-

ple, in many fish and marine invertebrates, InDels are

so common in introns that traditional sequencing of

amplified loci long ago shifted to exons. The problem

of misalignment in multiple gene copies can be partic-

ularly acute in gene families where the copies are

identical in some regions but variable in others. There

are some ways to deal with two issues – most com-

mon is to filter out any SNP within a certain distance

of an InDel and to filter out SNP clusters (potentially

due to multiple-copy genes). This approach, however,

is highly conservative. Another approach used by the

Broad Institute’s ‘Variant Quality Score Recalibrator’

(VQSR) (DePristo et al. 2011) is to use sets of known

SNPs in order to train Gaussian mixture models in

order to recalibrate the quality scores of a list of raw

SNP data, which then makes it possible for the

researcher to pull out a set of SNPs with a user-

defined probability of being true (Van Der Auwera

et al. 2013). Paralog identification can also be per-

formed by comparing heterozygote excess across con-

tigs with different sequencing depth. This approach
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can then be used to compare likelihoods of models

with or without paralogy to filter out dubious SNPs

(Gayral et al. 2013). It is also possible to choose a sub-

set of SNPs in contigs suspected to consist of multiple-

copy genes and verify that they segregate, that is that

they do not always exhibit the same pattern.

One clear advantage of high-coverage paired-end

RNA-Seq data is that they can sometimes be used to

infer haplotypes. Particularly, the GATK ‘haplotype

caller’ can use reads that cover multiple heterozygous

positions to phase these SNPs. If linkage is high

enough, the approach can produce longer haplotypes

that can provide insights into the patterns and tempo of

selection (Nielsen et al. 2011).

Once a list of filtered SNPs has been obtained, it is

often valuable to confirm them with external validation.

One way to perform this is by designing primers from

the transcriptomic data, and ‘Sanger’ sequencing geno-

mic DNA or other high-throughput SNP genotyping

methods, such as mass spectrometry (Renaut et al.

2011), SNP assays (Gagnaire et al. 2012; Limborg et al.

2012), amplicon sequencing (O’Rawe et al. 2013) or

high-resolution melting (HRM) (Wittwer et al. 2003), if

the SNP frequency is not too high (amplicon sequences

must be short enough to only span one SNP). There are

some complications to this, most notably unknown

intron–exon boundaries – if you design primers that

span a long intron, your genomic DNA will not

amplify. This can sometimes be avoided by studying

intron–exon boundaries in published genomes of

related species (boundaries are sometimes quite con-

served evolutionarily). Because exons are often very

short, such amplification products do not produce

much sequence data. However, they can be valuable in

expanding the population sample of a study and testing

gene frequency differences seen in a preliminary study

(e.g. Pespeni & Palumbi 2013).

Transcriptomic genotyping and allele frequency
estimation

A common goal of most population genomic studies is

to either genotype each individual at variant sites or

alternatively (and more commonly) use pooled popula-

tion-wide data to directly estimate allele frequencies

(e.g. Kofler et al. 2012; Martins et al. 2014; Schl€otterer

et al. 2014). It is possible to estimate genotypes and

allele frequencies from the GATK/SAMtools output

described above, but it has been shown that for low-

medium coverage sites, this might introduce biases

(Kim et al. 2011). Thus, alternative approaches have

been developed using maximum-likelihood approaches

to directly estimate genotypes from the sequences,

without first calling SNPs (Tsagkogeorga et al. 2012;

Gayral et al. 2013). Similarly, bias can also be intro-

duced when calculating allele frequencies from low-

coverage genotype data, for example due to loss of

low-frequency alleles which can affect the site-fre-

quency spectrum (Han et al. 2014b). Also in these cases,

it seems appropriate to directly estimate allele frequen-

cies directly from the sequence data, using alternative

statistical approaches (e.g. Nielsen et al. 2012; Han et al.

2014a).

One key issue in using pooled data is the representa-

tiveness of the number of short reads with one or the

other nucleotide, compared to the actual number of

alleles present in the genomic DNA of the sequenced

tissue. Ideally, a heterozygous individual would always

have a 50/50 distribution between alleles in the data,

and all individuals in a pool would be equally repre-

sented in the sequence data, but in reality, the data are

most often skewed in some way, due to a number of

reasons. PCR artefacts from the library preparation pro-

tocol (nonrandom priming or amplification) can also be

potential culprits. Biologically, allele-specific expression

(ASE) patterns, where one allele is more highly

expressed than the other, could also potentially throw

off genotype estimates. On an individual basis, this

issue is unlikely to have a large effect, as the expression

bias would have to be several orders of magnitude to

inaccurately call a heterozygote a homozygote. How-

ever, when sequencing pools of individuals, even small

differences in expression could potentially throw off

allele frequency estimates. There is currently an active

debate on the magnitude of this issue (see e.g. Lemay

et al. (2013) vs. Konczal et al. (2013)), but until more is

known, it is likely prudent to try to estimate ASE in a

data set before proceeding with analyses of pooled

data.

There are several ways to estimate the prevalence of

ASE in a data set, most of which rely on supplementary

sequencing of genomic DNA (Degner et al. 2009; Mont-

gomery et al. 2010; Pickrell et al. 2010) to get an idea of

the expected distribution of the two alleles in a hetero-

zygote and then compare the RNA-Seq data to that dis-

tribution using binomial exact tests on a locus-by-locus

level. Alternatively, it is possible to investigate ASE on

a transcriptome-wide level using Bayesian modelling

(Skelly et al. 2011), which also allows for accurate calcu-

lations of false discovery rates. Another approach, taken

by Pespeni et al. (2013b), uses gene expression data for

testing for changes in ASE between different treatments,

the rationale being that if ASE is strong, allele fre-

quency changes will be accompanied by changes in

gene expression of the same loci (Pespeni et al. 2013b).

Thus, by testing for significant changes in gene expres-

sion, it is possible to filter out transcripts potentially

under the influence of ASE.
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Applications of expressed sequence data sets

Transcriptomic SNPs have the advantage of providing

functional information, allowing statistical tests to be

conducted at levels above that of a single contig (Fig 2).

For example, tests can be conducted about whether

SNPs with high divergence in allele frequencies from

population to population cluster into certain gene cate-

gories. The same approach can also in principle detect

slight balancing selection by asking whether SNPs with

particularly low divergence in allele frequencies from

population to population cluster into certain gene cate-

gories (Leffler et al. 2013).

Outliers

One of the most common goals of population genomic

studies is to identify loci under selection or adaptive

loci (Savolainen et al. 2013). The main idea is that in

two populations under different selective regimes,

genomic regions will exhibit a normal distribution of

divergence, and by identifying loci significantly outside

of the distribution curve (so-called outliers), you will

arrive at a set of candidates likely to be affected by

selection (balancing or disruptive)(Beaumont & Nichols

1996). The metric most commonly used for this type of

analysis is FST (the proportion of genetic variation that

can be explained by differences among populations)

(e.g. Pespeni et al. 2012; De Wit & Palumbi 2013). There

are several software packages that identify outliers,

most of which are based on the FDIST algorithm, which

assumes a certain proportion of the loci to be outliers

(Antao et al. 2008). However, typical data sets for SNP

analysis of transcriptomes or whole-genome RAD

sequencing include 10 000s to 100 000 of variable posi-

tions. Analysing allele frequencies at these positions for

signs of natural selection includes the strong possibility

that some will appear to be more differentiated than

expected strictly by chance and not by selection. In

principle, levels of differentiation between populations

will always produce a list of highest FST loci – the chal-

lenge has been to generate other ways to test these can-

didate loci against neutral expectations.

The outlier approach has been to compare the num-

ber and distribution of high FST loci to that expected

under neutral theory. However, it has been difficult to

generate this expectation accurately. For example, back-

ground selection in subdivided populations can reduce

diversity in linked regions with a following increase in

FST (Charlesworth et al. 1997), and as a result, outlier

approaches can fail to eliminate all spuriously differen-

tiated loci (Lotterhos & Whitlock 2014). It is also possi-

ble to compare loci putatively under selection to

outliers generated by permuted populations from the

original data set, indicating what distribution of FST
you would expect to observe from stochastic processes

alone (e.g. Pespeni et al. 2013b; De Wit et al. 2014).

A second method of outlier identification is through

the Bayesian framework described by Foll & Gaggiotti

(2008). Their Bayesian algorithm uses two models, one

incorporating selection and one that does not, and esti-

mates their respective posterior probabilities using an

MCMC approach. Finally, it uses the posterior odds

ratio to acquire P-values for each locus to be under

selection, with user-specified false discovery rates. This

method, implemented in the ‘BayeScan’ software

(http://cmpg.unibe.ch/software/BayeScan/), is much

less prone to false positives (Narum & Hess 2011).

High quality 
transcriptome assembly

Map reads 
to contigs

Transcript 
abundance 

data

Count reads mapped 
to each contig

Deduplicate reads

Map reads to contigs

Identify SNPs/Genotypes

Quality filter

Expression
differences

among treatments/
populations/

species1

SNP-transcript 
association, eGWAS 

eQTL2

Identify 
outlier loci4

Principal 
components/ 
STRUCTURE3

Test for 
correlations with 
environmental 

variables5

Compare 
to evolutionary 

patterns in other 
populations or 

species9

Experimental 
evolution or single-

generation selection 
experiments6

Association 
studies, GWAS, 

QTL8

Test for 
signals of selection in 

microRNA binding 
sites7

Note that functional enrichment analyses 
can be performed with any of these results

Genetic 
polymorphism 

data

Fig. 2 Examples (not exhaustive) of post-

assembly evolutionary applications of

transcriptomic data sets discussed in the

text. References cited in the figure: 1Cata-

lan et al. 2012; Barshis et al. 2013; 2West

et al. 2007; Harper et al. 2012; Zou et al.

2012; 3Jaramillo-Correa et al. 2001; De

Wit et al. 2014; 4De Wit & Palumbi 2013;

Pespeni et al. 2013a,b; 5Manel et al. 2010;
6Fos et al. 1990; 7Szeto et al. 2014; 8Kim

et al. 2011; 9Jones et al. 2012; Loire et al.

2013; Romiguier et al. 2014.
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Nonoutlier approaches to identifying loci under
selection

Other approaches seek to generate associated data that

independently tests high FST loci for other features asso-

ciated with selection. Such approaches in testing for

groups of loci with 1) high levels of amino acid poly-

morphism; 2) a skewed distribution of minor allele fre-

quencies; 3) enrichment for certain functional roles; 4)

an association with individual fitness; and 5) an ontoge-

netic change in gene frequency, or other links between

genotype and phenotype. These analyses can provide

additional independent tests that a group of loci show-

ing high FST differentiation are under selection. In gen-

eral, when parallel data sets can be used to test the

prediction that a set of loci – possibly discovered by

outlier analysis – is under natural selection, there is a

higher likelihood that the outlier analysis has identified

some of the selected loci.

For example, Pespeni et al. (2013b) identified a set of

outlier loci that had higher levels of differentiation than

expected among populations exposed to different levels

of ocean acidification. However, the data also showed

that this group of highly differentiated loci showed

high levels of amino acid polymorphism and were

grouped in functional categories including skeleton for-

mation (Pespeni et al. 2013b). These supportive analyses

were particularly important in this case because FST dif-

ferences might have been misleading for two reasons:

the prevalence of false positives (see above) and the

possibility that allele-specific expression in different

conditions altered apparent allele frequencies among

pooled samples. Differentiation in amino acid replace-

ment rates and in enrichment of important functional

genetic categories added important corroborative data

increasing the likelihood that selection has affected loci

in this group. Likewise, De Wit et al. (2014) showed out-

lier SNP differentiation in abalone populations before

and after a major natural mortality event, thought to be

due to a harmful algal bloom. Enrichment analyses

found that outlier loci grouped into specific metabolic

functional categories linked to the effects of algal toxins

found at high levels in abalone tissue.

Even with additional data sets, genomic tests of tens

of thousands of loci only generate a set of candidate loci

hypothesized to be under selection, and further work is

usually needed to discern which of these loci are true

targets of selection. Such extra work might involve care-

ful surveys of polymorphic loci through targeted

sequencing to discern patterns of haplotype variation,

or other high-resolution patterns of allelic variation over

space and time. For example, Pespeni et al. (2013b)

found that the same functional classes of genes that

responded to experimental acidification showed correla-

tions with local pH conditions across six populations in

the wild (Pespeni et al. 2013a) and putative adaptive

loci identified as FST outliers (Pespeni et al. 2010)

showed correlations with local temperature conditions

in finer scale sampling in the wild (Pespeni & Palumbi

2013). Further work on the physiological basis of selec-

tion, the biochemical ramifications of allelic variation or

the gene expression variation associated with allele dif-

ferences can help to track the mechanisms by which

selection acts (Le Corre & Kremer 2012).

In this point of view, these analyses first detect that

there is a footprint of selection in the data, that the foot-

print is associated with a particular set of loci, and that

the footprints lead in a particular physiological, biochem-

ical or genetic direction. The initial genome-level data

sets should be viewed as a beginning of this process.

Evolutionary transcriptomics

In many cases, selection might not act strongly on single

genes, but rather have subtle effects on many loci with

similar functions, for example through regulatory or met-

abolic networks (Fraser et al. 2004, 2010). In these cases, it

might not be possible to pick up individual loci as out-

liers, especially at the stringent levels of significance

required when 10 000s of individual loci are examined.

However, by testing whether loci with high FST are non-

randomly clustered into distinct metabolic or functional

categories, it is possible to infer the action of selection

even in the absence of individually significant loci (e.g.

Pespeni et al. 2013b; De Wit et al. 2014).

Typically, these nonrandom associations can be eluci-

dated by overrepresentation analyses (ORA), which com-

pare the proportion of functions in a data set of interest

(e.g. an outlier set) to the transcriptome-wide distribution

of gene functions, while correcting for multiple tests (see

e.g. Zheng &Wang 2008). Another, perhaps more power-

ful enrichment analysis approach, focuses on comparing

the transcriptome-wide traits of members in a functional

class vs. the rest of the transcriptome for amino acid poly-

morphism, FST levels, etc. This approach compares traits

in a small number of groups and can easily be simulated

in permutation tests to gain statistical support. It is still

unclear exactly how much of functionally important

genetic variation is located in genic regions compared to

regulatory regions (see e.g. Jones et al. (2012)), but espe-

cially for nonmodel systems, the genic regions will pro-

vide an initial view of the functional targets of a putative

selective regime. In this respect, it could also be fruitful

to focus on tissues/life stages that are a priori determined

likely to be enriched for functions of interest, such as

gonadal tissue if reproductive barriers are of interest (An-

dres et al. 2013) or neural tissue for studying behavioural

sexual dimorphism (Catalan et al. 2012) because RNA
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from these tissues will be enhanced for expression of

these genes.

Another powerful feature of transcriptomic data is the

potential to examine changes in gene expression levels

among individuals or populations. There has long been

a realization that gene expression differences play a

strong role in species differentiation and in population

adaptation (L�opez-Maury et al. 2008). Several studies

between closely related species indicate that there is a

genetic basis for differences in transcript levels (Fraser

et al. 2004), which could lead to adaptive divergence in

the wild (Jeukens et al. 2010; Leder et al. 2015).

The combination of gene expression measurements

(based on read counts) and SNP detection (based on

comparing read sequences) from the same individuals

and the same RNA-Seq data set provides a new look at

the functional role of SNPs in gene expression. Quantita-

tive estimates of gene expression can be associated with

changes in nucleotide sequence (eGWAS) (Harper et al.

2012). Ironically, most SNPs controlling gene expression

occur outside the coding regions of genes, and so find-

ing relationship between a SNP genotype and expres-

sion levels can signal an indirect link between the SNP

and whatever is controlling gene expression (N. Rose, F.

Seneca & S. R. Palumbi, unpublished data). The same

method can furthermore be used to study regulatory

network changes by analysing co-expression patterns

and associating with nucleotide changes and phenotypic

traits (Szeto et al. 2014). The promise of this approach is

that experiments on natural selection for gene expres-

sion differences can now be monitored in ways that

require much less effort than in the past.

Finally, cross-species comparisons of transcriptomic

data have recently shown promise for conservation

genetics of endangered animals (Loire et al. 2013) and

also for gaining an enhanced understanding of the fun-

damental principles of population genomics (Romiguier

et al. 2014), allowing us to potentially predict the

responses of natural populations to future environmen-

tal perturbations.

Emerging opportunities

The ultimate data set for population genomics is a com-

parison of full-genome sequences of individuals within

and between populations. Such comparisons have been

made for humans, yeast, Drosophila and a few other

model systems, and are rapidly becoming economical for

nonmodel species. In some senses, the attraction of

reduced representation genome data sets (e.g. transcript-

omes or RAD) is that they provide a way of increasing

sample number in a study while maintaining practical

DNA sequencing costs. However, as DNA sequencing

costs continue to drop, and as analytical tools continue to

become more powerful, there will probably be a move

away from reduced representation genome data sets and

a move towards full-genome population genetics for spe-

cies in the wild. Even today, such data sets are feasible: a

DNA sequence run of 200 million reads at 200 bp each

provides 40 Gb of data, or about 40 genome equivalents

for a 1-gigabase genome in a single lane. This is not

enough data to construct a full genome for all individu-

als, but it is enough to produce allele frequency data at a

good portion of the full genome for a mixture of individ-

uals in the lane.

However, even with these remarkable data in hand, a

focus on expressed sequences remains extremely valu-

able. In this case, mapping genomic reads to a transcrip-

tome can produce the sequences of many regions of the

coding genome, allowing many of the analyses suggested

above. This approach leaves behind the gene expression

data made available by RNA-Seq but has the advantage

of not requiring mRNA as a starting material.

Summary

With all the issues associated with genome assembly,

focusing on the transcriptome provides a cost-effective

way to reduce complexity while still retaining a large

fraction of functionally relevant information. SNP geno-

typing from transcriptomic (RNA-Seq) data is a field cur-

rently growing rapidly, and while many studies to date

focus on marker development with no further population

genomic analyses, the field is evolving rapidly. Using

expressed sequence data, there is potential to study not

only patterns of SNP markers but also associations of

phenotypes to alternative splice events or gene expres-

sion changes, and to start understanding the genetic

background causing these patterns. There are some

issues remaining to be studied in more detail, especially

the effects of allele-specific expression on pooled RNA-

Seq data. However, these issues are quite likely to be

addressed within the near future, and new statistical

frameworks will undoubtedly continue to extend the use-

fulness of RNA-Seq data for the foreseeable future.
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