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ABSTRACT

Starfield, A.M., Farm, B.P. and Taylor, R.H., 1989. A rule-based ecological model for the
management of an estuarine lake. Ecol Modelling, 46: 107-119.

It is often difficult to build conventional dynamic models for an ecological system because
the relationships between the abiotic and biotic components of the system are understood
only in a rough, qualitative rather than a detailed, quantitative sense. This paper shows how a
rule-based model can be formulated and used in this type of situation.

The purpose of the model is to assist managers of a large, shallow coastal lake connected
to the sea by a narrow estuary. Fluctuations in the salinity of the lake have a marked effect
on the biotic components and managers are interested in the likely effects of alternative
strategies for ameliorating the salinity.

The paper shows how available information lends itself to a representation in terms of
rules that indicate how important biotic components change (on a crude scale of 1 to 5)
depending on the prior state of the system and current water conditions. The model was
incomplete at the time of writing, but at least one important (and unexpected) result has
already emerged: the abundance of underwater plant biomass is sensitive to the rate of
change of salinity rather than the salinity level per se.

Several consequences of this type of modeling are noted: it draws on the experience of
both scientists and non-scientists, provides a consistent, logical basis for discussion, improves
communication between field biologists and managers, lends itself to an adaptive approach,
and can provide assessments of the quality of each simulation.

It is suggested that this approach is pertinent whenever the effects of abiotic events
dominate mutual interactions between the biotic components of a system.

CONTEXT OF THE MODEL

Lake St Lucia (28° 15’S 32°30’E) is a saline coastal lake situated at the
southern end of the Mocambique coastal plain (see Fig. 1). It is 60 km long,
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Fig. 1. Location of Lake St Lucia, the position of the estuary mouth and canal, and the
division of the lake into two cells.

3-5 km wide, and has a surface area of 350 km®. It is an extremely shallow
system, most of it being less than 1 m deep.

The lake is connected to the Indian Ocean by a 21 km long narrow
channel and has a mouth which may be wide open, constricted, or closed.
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Since it has a high surface—area to volume ratio, it loses a considerable
proportion of its water to evaporation. The lake level generally fluctuates
about the mean sea level (MSL) mark. When it 1s above MSL, there is a net
outflow of water from the lake to the ocean; when below MSL, there is a net
inflow of seawater, and salt enters the system. During seasons of normal
rainfall most of the freshwater entering the system is from direct precipita-
tion and from the rivers which enter the northern extremities of the lake. A
salinity gradient develops, ranging from freshwater in the north to sea-water
in the south. During drought conditions, no freshwater enters the system
from the rivers and water losses through evaporation concentrate the salt.
Under these conditions the salinity gradient is reversed; the water with the
lowest salinity is the seawater near the mouth, and during extreme condi-
tions the salinity of the water farthest from the mouth can be concentrated
to more than 3 times that of seawater. ‘

The St Lucia ecosystem is predominantly detritus-based. The source of
the detritus is reeds and submerged plants during low and moderate salini-
ties, and phytoplankton during periods of high salinity. During low salinities
the main trophic pathway is short — consisting mainly of the water plant
Potamogeton and herbivorous birds such as ducks and coots. When salinity
is closer to that of seawater, the main trophic pathways include the benthic
fauna, fishes and piscivorous birds. During high salinities, much of the
benthic fauna dies off, fish move out, and the dominant fauna are zooplank-
ton which are fed upon by as many as 60 000 flamingos.

Human activities in the catchments and the alteration of the mouth have
increased the sensitivity of the lake to climatic fluctuations, and the salinity
changes in St Lucia are now considered to be more extreme than in the past.
Changes of salinity result in different biota, and it is clear that catchment
land uses or any other activities which change the hydrology of the lake can
have undesirable effects. As a counter measure, the hydrology of the system
can be manipulated. For example, the flow of water through the estuary
mouth can be controlled by dredging, or a recently built canal can be used
to divert fresh water from a nearby river.

A prerequisite for catchment regulation and hydrological manipulation is
a sound understanding of physical changes in the lake and the associated
biological responses. Managers wish to be able to predict, within reasonable
limits, the biological consequences of any actions they may be considering.

Hutchison and Midgley (1978) developed a complex hydrological model
of St Lucia which simulates the water gains and losses and the changes in
salinity and lake level. This model was developed to evaluate the hydrologi-
cal effects of various management options; it was never intended, however,
to show the biotic outcome of the options tested.

Although there has been a significant amount of biological research
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conducted at St Lucia, most of it is in the form of short-term studies on
specific components. There has been no coordination between studies and
there is little synthesis to explain how St Lucia functions as a holistic unit;
1.e., as an ecosystem. It would be attractive to try to build a model similar to
Kremer and Nixon’s (1978) model of Naragansett Bay, but in this case there
was neither the quantitative knowledge nor the resources to develop a
complex compartmental model. However, there is some knowledge of what
will happen to the various components of the lake under different sets of
circumstances. For example, while it may not be possible to say that ‘at x
salinity, phytoplankton p will be consumed with y efficiency by predator
q’, 1t may be known that if salinity rises above a certain level then the
submerged plants will die back and after a short delay the numbers of ducks
will drop. Observations such as this are currently used in an informal and
uncoordinated fashion to influence management decisions.

Starfield and Bleloch (1986) describe (but do not implement) the idea of a
rule-based qualitative predictive model. We wondered whether this approach
could be used to coordinate the existing knowledge of the system in order to
predict the biological state of St Lucia, in a coarse and qualitative manner,
from a given history of physical conditions (e.g. salinity and lake level). The
long-term objective is to combine this qualitative biological model with the
existing hydrological model to make the best use of current understanding in
guiding management decisions.

In this paper, we begin by outlining the differences between a conven-
tional system model and a qualitative rule-based model. We then go on to
describe parts of a rule-based model which is currently being developed for
Lake St Lucia, and end by discussing what we have learnt from this exercise.

RULE-BASED MODEL

In both conventional and rule-based models, the objective is to simulate
how different biotic components of the system respond over time to changes
in both the abiotic components and other biotic components. In a conven-
tional model, each component is represented by a real number variable. The
conventional model uses mathematical operations in the form of difference
or differential equations to calculate the amount of change in a given
variable over some period of time. Examples of conventional system models
are the Lotka—Volterra equations (at the theoretical level) and simulation
models such as that of Kremer and Nixon (1978).

Suppose, however, that we decide to represent both the physical (abiotic)
and biotic components using a small set of discrete states rather than real
number variables. We now wish to predict how each variable changes from
state to state over a period of time. Instead of mathematical operators and
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differential equations, we use logical operators in the form of IF-THEN rules
to predict these changes. A set of such rules makes up a qualitative
predictive model, indicating how the system would change for each combi-
nation of states. Note that in conventional models time may be either
continuous or discrete; rule-based models are event driven and therefore
discrete.

In the case of St Lucia, the relevant physical states are past and present
water and salinity levels. As mentioned in the introduction, there is a salinity
gradient in the lake. For the sake of simplicity we represent this by dividing
the lake into two uniform cells (see Fig. 1). The biological states represent
abundance (in discrete intervals) of functionally equivalent groups (e.g.
piscivorous birds) within each cell. The model consists of rules which update
these states every 3 months.

Table 1 shows how the abiotic states have been defined. Notice that the

TABLE 1

Representation of biotic and abiotic components in the model

Biotic states

State Biomass range represented
(percent of the maximum observed historically)
1 0-5
2 6-12
3 13-25
4 26-50
5 > 50
Salinity states Lake level states
State Salinity level (ppt) State Lake level
1 0- 4 1 low: below Mean Sea Level (MSL)
2 5-12 2 medium: 0-20 cm above MSL
3 13-25 3 high: more than 20 cm above MSL
4 26-45
5 46-65
6 > 65
Seasons
Quarter Actual time of year
1 summer (January, February, March)
2 fall (April, May, June)
3 winter (July, August, September)
4 spring (October, November, December)

ppt, parts per thousand.
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resolution (as reflected in the intervals) has been carefully considered. For
example, the first salinity interval (0-4 ppt) represents the range that
fresh-water organisms can tolerate, the second interval (5-12 ppt) is optimal
for the water plant Potamogeton pectinatus, and so on. For truly estuarine
organisms, the stenohaline (narrow tolerance) species can survive only in
state 4 (25-45 ppt), while the euryhaline (wide tolerance) species will
tolerate states 3 through 5. The resolution also matches understanding: there
are only three states for water level because there is no detailed knowledge
of how water level influences the biotic dynamics. Note that the seasons are
skewed to match available hydrological data.

The biotic components (plant and animal) are each allowed five states on
a logarithmic scale, as shown in Table 1. This level of discrimination was
thought to be adequate, while the choice of a logarithmic scale reflects the
exponential part of a population growth curve. (The system is disturbed so
often that one seldom sees sigmoidal growth.) The biotic components
included in the model are the detritus, phytoplankton, zooplankton, the
benthos, reeds, three underwater plants (Potamogeton pectinatus, Ruppia
cirrhosa and Zostera capensis), fish, ducks (representing all herbivorous
birds), flamingos, pelicans (representing all piscivorous birds) and humans.
This choice of components was guided by the purpose of the model . Thus,
for example, crocodiles and hippopotamuses, which do not react to the
short-term lake dynamics, are omitted. The human component 1s included
because management actions are related to recreation. There 1s also a bias
towards birds because they are a good indicator of the state of the ecosys-
tem.

As an example of how the IF—THEN rules are constructed, consider the
rules relating to Phragmites reeds. The local biologist knows that the salinity
tolerance of these plants is as follows:

Salinity (ppt) Plant status

<25 optimal, there is net growth

26-45 suboptimal, plants maintain levels with no net growth or reduction
> 46 reeds die back slowly

In addition, it is known that extreme salinities { > 65 ppt) will quickly kill
the above ground portion of the reeds. If the rootstock is not flooded by the
highly saline water, it becomes dormant and will grow again once conditions
are less saline. If, however, lake levels are high the rootstock will be flooded

and hence regrowth will be slow. Finally, the plants are observed to grow
most quickly in the spring and summer months.

With only this much information, an attempt can be made to build rules
about the reed growth. Using the first conditions, with low or medium lake
levels, the first rule is developed:



113

RULE 1:
“1r the salinity level is high, and lake level is low or moderate
THEN reeds die back within three months.”

To develop the second rule, which takes into account both high salinities
and high water levels, further information is needed about the rate of
recolonisation after the rootstock has been killed. With a bit of prodding the
biologist estimates that after the rootstock has been killed it will take at least
a year for the reeds to reestablish and (conditions being favourable) reach
the next level, state 2. In other words, after extremely high salinity (> 65
ppt) and high lake level, the reeds will remain in state 1 for at least a year. A
rule can be formulated almost directly from this clarified observation:

RULE 2:

“1F the salinity level is high

AND the lake level is high,

THEN the reeds will remain at level 1 for at least a year.”

Similarly, four more rules can be found within the above observations.

RULE 3:
“1F the salinity level is between 45-65 ppt, _
THEN the reeds will die back slowly (drop 1 level each quarter).”

RULE 4:
“1F the salinity level is between 25-45 ppt,
THEN the reeds will remain at their present level.”

RULE 5:

“1F the salinity level is below 25 ppt

AND the season is either spring or summer,

THEN the reeds will grow very quickly (increase 2 levels).”

RULE 6:
“1F the salinity level is below 25 ppt
AND the season is either autumn or winter,

THEN the reeds will grow well (increase 1 level).”

These rules have been written rather loosely in English. In the syntax
required by the program we have developed, they would actually be written:
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SET: REEDS.

RULE 1: IF salinity = 6 & (level = 1 or level = 2) THEN reeds: zero.
RULE 2: IF salinity = 6 & level = 3 THEN reeds: future4.

RULE 3: IF salinity = 5 THEN reeds: downl.

RULE 4: IF salinity = 4 THEN reeds: same.

RULE 5: IF salinity < 4 & (quarterl OR quarter4) THEN reeds: up2.
RULE 6: IF salinity < 4 & (quarter2 OR quarter3) THEN reeds: upl.

This syntax is easy to learn: “reeds: downl”, for example, instructs the
program to set the reed abundance for the next period at one level below its
current level; “reeds: future4” sets the level at the lowest abundance for the
next four time periods irrespective of conditions during that year.

Similar rule sets can be developed for other biotic components of the
system. The reed example illustrates, however, how the structure of the rules
and the way in which we have represented the states provide a framework
for the biologist, one he can use to make his accumulated knowledge explicit
to some degree of accuracy. Without knowing all the mechanisms and
~ interactions involved, and without detailed quantitative information about
the system, we see that it is nevertheless possible to create a small model of a
portion of the system.

SAMPLE OUTPUT

As an example of another portion of the model, consider the three main
submerged plants in the lake: Potamogeton pectinatus, Ruppia cirrhosa and
Zostera capensis. Growth and decay of these plants does not depend on
water level, but each has a different salinity tolerance and different response
time. Growth is generally fastest in fall and winter when the water is calm
and clear. Under unfavorable salinity conditions, die-back is also seasonal
and is faster in spring and summer (as a result of rougher wave action and
increased turbidity). ‘

Figures 2(A) and (B) show the results from two different simulations
using rules based on the above information. In both simulations salinity
levels were first increased then decreased; in case (A) these changes were
relatively slow (over a period of 15 years), while in case (B) they were
considerably faster (over a period of 7 years). Both figures show the response
of all three submerged plants to these salinity changes. Both show the
Potamogeton flourishing at low salinities, while Ruppia and Zostera respond
best at higher salinities.

These responses are as expected. What is really interesting is a compari-
son of the two figures, which reveals that longer periods of stability in the
salinity are needed to attain maximum plant biomass: the faster changes
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Fig. 2. Simulated response of three underwater plants to: (A) relatively slow salinity changes,
and (B) faster salinity changes.

lead to noticeably lower levels of submerged plants in the system as a whole.
This in turn will affect all higher trophic components when the rules for
those components are added to the simulation. There will also be indirect
effects because decayed plants contribute to the detritus component.

IMPLEMENTATION, TESTING AND FUTURE USE

The model has been implemented on a personal computer using a
modified version of an expert system shell (Starfield et al., 1985; Starfield
and Louw, 1986). The rules, as indicated previously, are grouped in sets
where each set updates the state of a specific biotic component. As presently.
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implemented, the program addresses the rules in each set sequentially,
starting with the first rule and exiting the set when a rule is satisfied, i.e.
only one rule in each set can be fired. This has both advantages and
disadvantages. The main advantage is that one does not have to worry about
the consistency of the rules provided that their order is carefully planned.
The disadvantages are that one does have to be wary of the order (which
makes the rule sets difficult to update) and that the number of rules in a set
can expand considerably when feedback is included in the model, i.e. when
the state of a variable is affected by variables above as well as below it in the
food chain. The advantages and disadvantages of a program that addresses
every rule in a set, and can implement more than one rule per set per time
set, are currently being explored.

Two other features of the modified expert system shell have still to be
implemented in the model. The first is an explanation feature which allows
for explanatory text to be provided for each rule, while the second is a
tracing feature which lists, in order, all the rules fired during a simulation.
As explained in the discussion section below, both these features are
considered essential. A third feature which will be added is a confidence
rating for each rule (perhaps as a scale of 1 to 5 where 1 represents a guess
and 5 represents a rule that has been validated). This can then be used in
conjunction with the trace feature to provide measures of confidence for the
logical pathways associated with different simulations.

The rule set is currently incomplete in the sense that the rules for some
variables (e.g. the detritus) are almost purely guesswork, while the rules for
others (e.g. fish) are still too sketchy. The rules have been constructed on the
basis of accumulated expertise without direct reference to historical records.
Intermittent records do in fact exist for the past 20 years (e.g. duck counts)
and the intention is to compare the model with this data set. This cannot be
considered as a validation of the model, since the same data set in a sense
constitutes the accumulated expertise, but it will provide a stringent testing,
and no doubt updating, of the rules.

This leads to the question of how the model will be used in the future. At
this stage it should be thought of as a learning tool which at any time
reflects the best interpretation of current understanding. For it to be
adaptive and effective it is essential that it be used on a regular basis, that its
predictions be compared with what actually happens, and that its rules be
modified in the light of discrepancies. As the model develops, so confidence
in it will increase and its role in guiding management decisions will expand.

The fact that the model runs on a personal computer, accessible to
managers, scientists and field personnel, is crucial. The intention is to link
this model to the existing hydrological model (the way in which the abiotic
components have been defined makes this easy to do) but the hydrological



117

model would first have to be implemented on a personal computer too. One
way in which the linked models could then be used would be to refer back to
past conditions (e.g. a period of severe drought and high salinity) and
simulate what might have happened if alternative management strategies
had been applied at that time (e.g. if the estuary mouth had been closed).
Even with the current set of biological rules, such an exercise could provide
the basis for healthy argument about the merits of alternative management
actions. '

DISCUSSION

Despite the fact that the St Lucia model is incomplete, it is possible to
draw some conclusions about this type of modeling. We begin by listing
some of the perceived advantages of rule-based modeling.

(1) An important advantage is that field biologists respond positively to a
rule-based model. It provides a format which frequently corresponds with
their state of knowledge of the system. This allows them to structure their
knowledge, which in turn imposes discipline on their approach to under-
standing the system dynamics.

This is an important point. One might have a philosophical preference for
conventional system models, but our experience shows that biologists who
were uncomfortable with conventional models were enthused by the rule-
based approach, and were eager to contribute to and argue about the rules.
Their response to this form of modeling was “It fits what I know.”

Managers, too, respond enthusiastically to this type of modeling. The
model promotes discussion and facilitates communication between scientists
and management. It also facilitates interactions between resource managers
and the public in that it provides a reasoned, consistent explanation for
management policy.

(2) Qualitative modeling also fits well with the type of information
presently available. It is often difficult to prevent a conventional system
model from becoming too detailed. The way in which the variables are
defined in a qualitative model, and the way in which the rules are structured,
both make it easier to build consistently at a fixed level of resolution.

(3) Quality control is always difficult in a system model. In conventional
models one is forced to invent plausible relationships and, similarly, in
rule-based models one is forced to invent plausible rules. However, it is
relatively simple in a rule-based model to keep track of the flow of logic and
the rules that have been fired. In this way, one can evaluate the quality of
the conclusions reached. The workings of a rule-based model are available to
the user; the workings of a conventional model are often hidden from the
user.
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(4) Compartmental models have proved useful for describing systems
where interactions between the components are crucial. Rule-based models
are likely to prove more useful for describing systems that are dominated by
abiotic changes. The biotic changes in Lake St Lucia, for example, are
driven by climatic fluctuations.

(5) There is often a gulf between natural resource managers and scientists
because the former have to make immediate decisions while the latter are
unwilling to express an opinion until they have ‘completed’ their research.
Rule-based models can bridge that gulf, since they encapsulate the current
state of knowledge. That knowledge may be incomplete or even inconsistent,
but making it explicit and dynamic provides a solid basis for, at least,
consistent arguments. The model ensures that everybody has the same
mental picture. Moreover, a rule-based model has the ability to grow with
the available knowledge. It is more flexible than conventional models and
easier to update because: -

— the rules which constitute the model are structured as a data file rather
than a computer program,;

— their syntax is user-friendly;

— the trace feature makes the workings of the model easy to follow and
helps to explore the consequences of rule changes.

(6) As with any form of modeling, the process of building the model
forces people to think logically, carefully, and consistently and helps to
identify areas of poor understanding or insufficient information. For exam-
ple, the St Lucia exercise highlighted the need for more information about
detritus.

Some of the deficiencies or unanswered questions with this form of
modeling are:

(1) Although we have indicated that the model is flexible and easy to
update, there is still a need to develop updating procedures that maintain
the integrity of the model.

(2) A sensitivity analysis is an important part of any modeling exercise
and such an analysis can often be made routinely on a conventional model.
There is a need to develop a parallel approach for rule-based models.

(3) Quantitative models have the advantage in-that they provide an audit
of what goes in and what comes out of a system. For example, Kremer and
Nixon (1978) used their compartmental model to show that the pre-bloom
winter phytoplankton biomass in Naragansett Bay was too small to sustain
observed zooplankton levels. Rule-based models are incapable of drawing
such conclusions, and it might prove useful to ask how one could superim-
pose a rough audit on a rule-based model. It does not follow that rule-based
models cannot produce insightful results; the St Lucia model showed, for
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example, how periods of stable salinity were essential for the build-up of
large quantities of certain components.

(4) We have used a production rule representation because we were
familiar with our expert system shell and because the biologists were
comfortable with the IF—-THEN rule syntax. We have not asked whether there
are better artificial intelligence tools for this type of modeling.

The St Lucia model looks promising but can only be regarded as success-
ful once it has been integrated into the management decision-making
process. This will take some years to evaluate. In the meanwhile, it should be
apparent that rule-based models have a role to play: they provide a means
for accessing useful information which would be unsuitable for a conven-
tional model.
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