A Tale of Two Butterflies


Pinned specimens of the Xerces Blue in the Field Museum of Natural History. Photo by Brianwray26, licensed under Creative Commons via Wikipedia.

There are no graceful ways to mention extinct species in casual conversation. Years ago, on a visit to San Francisco, a local friend asked what I thought of Golden Gate Park. “You’re a naturalist, right—isn’t that just your thing?” I made the mistake of answering honestly. “It’s very pretty,” I agreed, “but there are too many eucalyptus trees and I think it would be better if the Xerces Blue were still around.” Awkward silence followed. Our conversation had taken a sudden nosedive, just like the population of Xerces Blue.

The Xerces Blue (Glaucopsyche xerces) was a small, delicate butterfly belonging to a group poetically dubbed the gossamerwings. Tiny flecks of iridescent sky on the wind, they bumbled low over the sand dunes along the Pacific coast in search of their host plants, weedy, insignificant-looking vetches, or wild peas. Aside from a few naturalists at the nearby California Academy of Science, nobody paid much attention to them. Life went on.

As the developing city of San Francisco swelled and grew, enterprising settlers changed the environment to suit themselves. They filled in the marshlands on the eastern edge of the peninsula, planted windbreaks of eucalyptus and Monterey pines to stabilize the dunes for Golden Gate Park, and paved over everything in between. The population of the Xerces Blue flickered like a soap bubble, and abruptly vanished. The last one was spotted in 1943. The very traits that allow the Xerces Blue to flourish as a species—their isolated population, their dependence on specific plant species—meant their populations could not recover from any damages. Once they were gone, they were just… well, gone.

Unlike most extinct insects, which vanish unnoticed and unmourned by humans, the Xerces Blue enjoys a moderate degree of fame and notoriety in its afterlife. Officially, it was the first insect species documented to become extinct from habitat loss and urban development. And it became the namesake for the Xerces Society, a conservation non-profit dedicated to preventing any further insect extinctions from happening. But unlike the passenger pigeon or the dodo, there are no plaques, no statues, no monuments, and its name is barely mentioned in popular literature. All that remains are occasional references in books, a handful of specimens in sealed cases in natural history museums and perhaps a few flickers of memory from those lucky enough to see one alive. On my visit to Golden Gate Park, I grieved the loss of the Xerces Blue. The possibility of ever seeing one alive was gone now, and it felt unbearably tragic.

Even as I found myself enjoying the city of San Francisco and all it had to offer (including Golden Gate Park, despite myself), I could not help but question—was it really always a choice between urban development and natural history? Was the destruction of the Xerces Blue inevitable? What could we do differently in the future?

Another species of native butterfly offers new insights into my questions. The California pipevine swallowtail (Battus philenor hirsuta) is a smaller, bulkier subspecies of the more widely distributed pipevine swallowtail, found only in California. The caterpillars in their later instars memorably resemble black and orange alien slugs, waving poisonous tentacles as a deterrence to predators; the pupae bear an uncanny resemblance to Metapods from Pokemon Go. The caterpillars only feed on the endemic California pipevine (Aristolachia californica), and their populations were crashing along with that of their food plant. It seemed like the usual extinction narrative was up and running. I braced myself for the worst.

But the story abruptly changed directions. Tim Wong, a biologist working in Golden Gate Park, started growing California pipevine and raising swallowtails in his backyard. The population of swallowtails in the city swelled rapidly. The more pipevine he and others planted in the area, the more butterflies there were. The California pipevine swallowtail is still threatened—there are no real ends in this kind of work—but at least this was a step in the right direction. There is hope. Not too far from the last home of the Xerces Blue, another threatened butterfly species is rebounding. For me, haunted by dreams of vanished butterflies, it felt like a kind of absolution. Maybe this time we wouldn’t screw up.

I think it’s safe to say that no one loved the Xerces Blue the way Tim Wong loves the California pipevine swallowtail—not, at least, until it was too late. Certainly, the simpler biology and wider range of the swallowtail made it easier for its populations to recover. But having human champions, people who were too crazy and too dedicated to sit back and do nothing, turned the tide in San Francisco. And what exactly brought the butterflies back? Creating habitat. Propagating their host plant, California pipevine, planting it in gardens and raising caterpillars. Nothing too big or dramatic. Just small changes, expanded over a wider scale. Anyone could do it, and someone did. And everything changed as a result.

Actions like these remind me that my dreams of gardens full of life and hope are not pipe dreams—or pipevine dreams, for that matter. They offer us an alternative to the usual doom-and-gloom framework, the long, slow, slide or the short, abrupt route to to extinction. They depend not on helplessness, but on personal involvement, personal responsibility, personal action—a reminder that all our actions matter. If everyone cared about just one species or place the way Tim Wong cared about the California pipevine swallowtail—enough to go out of their way to help them flourish in their own community, literally their own backyard—the world would be a vastly different place. Certainly more diverse, anyway. And if just a few people cared—well, that, too, would make a difference between life and death, endings and beginnings, at least for the time being.

Looking back to our awkward conversation in San Francisco, I now know what I would say to my friend, and to everyone else who cares to listen:

“Somewhere, not too far away, there is something so precious you cannot bear to lose it. Find it. Help it. Plant the seeds in your garden; make space for it in your heart. All is not yet lost. All is not yet gone the way of the Xerces Blue. Those that remain, like the California pipevine swallowtail, can still come back to us. All they need is the opportunity. Let us help them come home.”

A Prairie Home Companion


Grasses do not have a reputation for sexy among gardeners. In May, a chance encounter left me with dozens of leftover plants in need of a home, rejects from a sale at a local organization. It was immediately clear to me why they hadn’t sold: they were scraggly bits of green stuffed into plastic pots, primarily perennial bunchgrasses with a handful of obscure wildflowers thrown into the mix. For those who could read botanical Latin, however, the labels promised treasures: Virginia wildrye, wild quinine, purpletop greasegrass, scaly blazing-star, eastern gamma-grass, little bluestem, tall switchgrass, white doll’s daisy, redtop panicgrass. Just like at a cocktail party, I recognized most of the names, but I was hazy on the details; nevertheless, I recognized the call to adventure when I found it. And as it happened, I knew just the place to put them.

At first glance, the rain garden that came with my sister’s house was just a big hole in the ground. It wasn’t until we found the intake pipe, buried under rocks and clogged with debris, and connected it back to the gutters on the house that we realized it was a rain garden at all. Even though it was perfectly functional, catching and filtering runoff from the roof before it entered the creek on the edge of the property, it needed some work if it was going to be anything more than an eyesore.

The previous owners had their hearts in the right place, but landscaping was not their forte. There were some nondescript evergreen boxwood bushes around the edge of the pit that never flowered, a few irises in the late spring, and that was it for most of the year. In early fall, a cardinal flower (Lobelia cardinalis) popped up out of nowhere and made us popular with the local hummingbird before he migrated to Mexico. I stuffed some spindly leftover wild hibiscus I’d grown from locally collected seed into the pit and completely forgot about them. Life chugged along and the rain garden, well, just went with the flow.

I had no idea if the species from the plant sale were appropriate for a rain garden. But free plants and empty spaces bring out boldness in me. I planted randomly, mixing up species, colors and textures as best I could, until the entire pit was covered with tiny fluffs of green. They were up against the heat of summer and my Darwinian approach to gardening: whatever survived would do it on its own merits, without much coddling from me.

When I came back in August after months on the road, the barren pit had been transformed into a lush, overgrown jungle courtesy of a series of conveniently timed thunderstorms rolling through in the afternoons. The spindly hibiscus had managed to survive after all, the cardinal flower had come back for a second round, the wild quinine blooms had flopped over from their own weight, and the grasses had swelled both horizontally and vertically into massive clumps. Some had even sent out flowering plumes. “It needs to be mowed,” my father quipped. Meanwhile, as a student of botany, I saw the rain garden through new eyes now that the plants had matured. Inadvertently, unintentionally, almost completely by accident, I had re-created a patch of one of the state’s rarer ecosystems in my sister’s backyard: the Piedmont prairie.

Prior to European settlement in North Carolina, the uplands were patchworks of shady forest and open fields, grazed by bison, elk and white-tailed deer. Prairie meadows formed in areas where the soil was too poor to support trees, maintained by periodic fires. Unlike the annual grasses that make up most modern lawns, the Piedmont prairies were dominated by perennial bunchgrasses and specialized wildflowers. Once Europeans arrived, however, they cleared the land for agriculture and fires were suppressed. The patchwork prairies vanished, except along roadsides and utility right-of-ways where periodic mowing and spraying kept the trees from taking over again.

These days, the few remaining prairie remnants look remarkably ordinary—just another overgrown field—until you take a closer look within the sea of green. Those seemingly random species I had acquired from the plant sale were actually prime representatives of this fragmented and vanishing ecosystem. None of them were rare in and of themselves—but having all of them together in one place was unusual, a hearkening back to a not-so-distant past.

My tiny patch of prairie isn’t a perfect representation of what used to be here—we’re heavy on grasses, but missing many of the charismatic wildflowers like smooth coneflower and starry rosinweed that are now significantly rare in the state. That said, there’s only so many species you can cram into a few square feet, and the few anomalies grandfathered in just add to the garden’s own special character.

Ironically, my father was right—periodic mowing (or perhaps scything, in our case) is the way to go to maintain a prairie in the long run. Unlike the lawn grasses that grow scruffy after two or three weeks, though, the prairie can get by with one mowing every two or three years, unless an errant bison wanders by and trims it for us. Until then, I sit out on the porch and survey my tiny empire of grass. In the evening, after the afternoon thunderstorm passes through, I swear I can see them growing.

Secrets of The Vault

Sean and I are in The Vault. We’ve been here for a while—hours now. It’s less grandiose than it sounds, really just a back room in the Charlotte Town Hall, but it gives me the same feeling I get from the New York Public Library or a fancy art museum. Tread lightly, the walls are saying. Look closely. We have secrets for you.

Inside The Vault. Photo by Samantha Ford.

Inside The Vault. Photo by Samantha Ford.

What’s amazing is that the secrets of The Vault are not really secret at all. Every document in the room is in the public record, even the original map of the Town of Charlotte, hand-drawn in 1763. The massive red books of land records, the card catalogues of births and deaths—these pages of history are not preserved behind glass; we are perfectly free to look at them. I can reach out a hand, every now and then, to gently trace this two-hundred-and-fifty-year-old calligraphy.

We’re here to research the UVM Natural Area at Pease Mountain, a prominent hill directly west of the Charlotte Town Hall and just north of Mount Philo along the Champlain thrust fault. This semester, our cohort is performing a Landscape Inventory and Assessment of the area. We’ve spent several weekends strolling along the mountain’s broken quartzite ledges, and we’re starting to get a sense of the property’s natural resources. The soil is thin but rich, patterned here and there with the frostbitten remains of last year’s hepatica leaves. The trees are not the usual beech-birch-maple assortment we expected, but a variety of species used to warmer, drier climates: peeling trunks of shagbark hickory, gnarled red oaks, bitternut hickories with their sulfur-yellow buds. We’ve noticed hints of other mysteries: a road cut here, an old stone foundation there. UVM acquired the property in 1949; Sean and I want to know who has owned Pease Mountain–and what it’s been used for–as far back as the town’s records go.


First subdivision of the town of Charlotte.

We start by looking in the Index, a twenty-pound tome containing a list of every land transaction undertaken in Charlotte until the book ran out of pages around 1960. Thankfully the Index is alphabetized and we quickly find the record we need: “Jeanette S. Pease Phelps and George J. Holden to University of Vermont and State Agricultural College.”

I’m immediately absorbed in the web of archaic legalese that follows: “Now, know ye, That pursuant to the license and authority aforesaid, and not otherwise…We do by these Presents, grant, bargain, sell, convey and confirm unto the said University of Vermont…the following described land…Being Pease Mountain, so-called, in the town of Charlotte.” The deed was written barely more than half a century ago, but it reads like something from the middle ages. The solemn tone is compelling. I can picture the occasion, the buyers and sellers grouped around a table, poised to sign below the words, “In witness whereof, we hereunto set our hands and seals…”

Original charter of the town of Williston. Photo by Samantha Ford.

Original charter of the town of Williston. Photo by Samantha Ford.

We follow the trail further and further back, tracing property descriptions bounded by increasingly vague terms: “…to the N.E. corner of said lot to a maple stump with a cedar stake in said stump. Thence southerly on the west line of said owned by Everett Rich to a cedar stake & stones in the S.E. corner. Thence westerly on the north line…” The record books get thinner as we travel back in time, the pages more brittle, the writing fainter. Eventually we find ourselves scrutinizing a gridded map: the second subdivision of the town.

Accompanying the map with its numbered parcels, we find a list of the original owners of those parcels. Lot number 1, which at the time encompassed most of Pease Mountain, is ascribed to “Glebe for the Church.” We puzzle over this. Who was Glebe? We haven’t heard any mention of him in more recent deeds. Was he a minister?

Glebe for the Church. It sounds like a momentous designation. We finally think to Google the strange phrase, and we discover the ancient tradition of glebe land. It’s not a person after all, but a kind of conservation easement. When Vermont’s first towns were established, certain plots of land were set aside to remain undeveloped. These lands were leased to farmers or timber harvesters in exchange for a rental fee, which paid for municipal costs or, in this case, the upkeep of the parish. For hundreds of years, Pease Mountain was preserved by this tradition.

Mysterious stone structure found on Pease Mountain.

One of several mysterious stone structures found on Pease Mountain.

As we leave the Town Hall, Sean and I glance up at Pease. Our journey through the handwritten history of Charlotte has given us a deeper sense of this place. As we’ve walked there with our cohort we’ve mapped natural communities and forest stands, discovered vernal pools and views over the lake. But walking and looking can only take us so far back. Beyond the oaks and hickories, the purple cliffs, the porcupine and bobcat dens, there is another Pease Mountain story. It’s no longer legible in the landscape. But luckily for us, it’s all written down in the record books.

Julia Runcie is a first-year student in the Ecological Planning program.

For the Love of Bees

Hive of Activity. Photo credit: Gabe Andrews

Oh How She Glows

In Yellow, She Glows. Photo credit: Gabe Andrews

We want cheap groceries, strawberries in March, and impeccable lawns. We strive for dominion over the web of life, especially our domesticated crops and the pests that threaten them. Bees get caught in the middle of it all. Habitat homogenization and the increased use of pesticides –particularly neonicotinoids – have contributed to the decline of our pollinators, and bees have been hit the hardest. There are practical implications for this loss. We could talk about the $15 billion that honeybees contribute to the U.S. crop economy, or about the food on our fork (of which 1 in 3 bites requires insect pollination) [1]. Undoubtedly, California’s profitable almond industry – a crop entirely reliant on honeybee pollination – would crumble overnight with the complete loss of honeybees. But with the disappearance of these proficient pollinators we risk much more than a painful sting to our economy; we jeopardize our humanity.

Bees offer us creative inspiration. The hive and its workers give us metaphors persistent in everyday language. The brilliant construction of hexagonal honeycomb encourages architectural marvels that promote efficient design (circles, pentagons and octagons leave wasted space; triangles and squares –with their greater relative circumference –lack the storage capacity of hexagons) [3]. The cooperative society inside a hive emboldens us to become better humans. The careful collection of nectar reminds us to slow down and taste the sweetness of a good day. As worker bees gradually transform nectar to honey, they teach us fortitude and patience. Though these lessons are in shorter supply with a decline in apian educators, our individual and collective actions can keep them from disappearing altogether.

Humble Bumble

The Humble Bumble. Photo credit: Gabe Andrews

Many already stand –smoker in hand – ready to save the bees. Hobby beekeeping has gathered momentum, pollinator-friendly gardens are on the rise, and even the federal government has perked its ears. Organic agriculture has grown by 250% since 2002, a sign that consumer decisions have driven the market away from pesticide reliance [4]. All of this comes as welcome news to honeybees, but their step-sisters haven’t received nearly the hype. With all the attention placed on domesticated bees, wild bees continue their downward spiral. In the Northeast alone, close to 25% of bumblebee species (Bombus spp.) have disappeared or declined throughout their range [5]. Hopefully we can target our efforts more broadly to protect all genera of bees.

We know that habitat loss severely influences pollinator decline; our porches and backyards cover once-wild ground, but let’s keep our vision on the present for a minute. Landscaping with native plants is a great way to attract and support your local bees (not to mention reduce your mowing commitment). When the time comes for pruning, the hollow twigs of some goldenrods (Solidago spp.) and coneflowers (Echinacea spp.) make great homes for orchard (Osmia spp.) and small carpenter (Ceratina spp.) bees. Wooden boxes filled with holes serve a similar purpose for larger bees.  Don’t forget to leave pockets of bare soil for ground-nesting bees (Colletes spp.). Minimizing pesticide use could help keep bees from dying, but habitat and food will give bees a chance to live.

Watching and keeping bees is more art than science. With this mindful craft comes patience, awareness, and imagination, but you don’t need a honeybee hive to enjoy such an experience. Yes, bees are essential to the health of our economy, our planet, and the diversity of our dinner plate. A world without almonds and apples would be a shame. But to live without the unwavering brilliance of such humble insects would be a tragedy.

Gabe Andrews is a first-year graduate student in the Field Naturalist Program at UVM. 

[1] Hopwood, J. et al. (2012). Are neonicotinoids killing bees? A review of research into the effects of neonicotinoid insecticides on bees, with recommendations for actionThe Xerces Society for Invertebrate Conservation.

[2] Williams, G.R. et al., 2015. Neonicotinoid pesticides severely affect honey bee queens. Scientific Reports, 5, p.14621. Available at: http://dx.doi.org/10.1038/srep14621.

[3] Mathis, C.R. and Tarpy, D.R. (2007). 70 Million years of building thermal envelope experience: building science lessons from the honey bee. Available at: https://www.cals.ncsu.edu

[4] USDA Office of Communications bulletin April 15, 2015

[5] Vermont Center for Ecostudies: Bumble Bees


Restoring the American Elm

An arborist harvests flower buds from an American elm in Charlotte, Vermont. Photo credit: Gus Goodwin, The Nature Conservancy.

The flower buds from Mrs. Waters’ elm tree are 35,000 feet up in the stratosphere on an express flight to Ohio. The goal is to get them there before they dry up. When they arrive, scientists will lay them on wax paper, collect their pollen as it falls from the stamens, and use it to hand-pollinate the flowers of Ohio elms that are receptive and waiting in the lab. These buds may be the key to restoring the American elm to dominance in the floodplain forests of the Eastern United States, a focal project of The Nature Conservancy (TNC) and floodplain ecologist Christian Marks.

The buds’ progenitor, a four-foot diameter American elm in Charlotte, Vermont, named Henrietta, has beat the odds. Located merely a stone’s throw from four other elms, all of which have succumbed to Dutch elm disease (DED), Henrietta is noticeably larger and healthier. Though she (also a he—American elms bear “perfect” flowers, with both male and female parts) has signs of DED on two branches, the remainder of the tree is healthy enough to produce flowering buds, a luxury that the sick elms around it cannot afford. Normally, trees exposed to DED die within a year of exposure[i]. That this one has not– and that it continues to flower—suggests it may possess some degree of resistance.

After scientists cross-pollinate the Vermont and Ohio elms, they will tend the branches until they set seed. When the seeds mature into small, wafer-like samaras, evolved for wind dispersal, the Ohio scientists will airmail them back to Marks (wind dispersal by mechanized means) who will then grow them to seedlings and plant them in one of TNC’s floodplain forest restoration preserves. But that’s not all. What’s to say those young seedlings won’t succumb to the same fate as their not-so-fortunate relatives?

For Marks to know that Henrietta is a stalwart, he must subject her offspring to a potentially fatal injection of DED when they reach one inch in diameter. Though it will be some time before we find out if Henrietta is truly resistant, the offspring of buds collected from other trees in 2011 and 2012 are approaching the requisite diameter for testing. And while “absolute resistance” is the stuff of science fiction, previous studies conducted through Guelph University in Canada found a heightened level of resistance in 25% of lab-pollinated offspring reared from large, healthy elms[ii]. Marks is hopeful for a similar (or better) result from his Vermont/Ohio crosses, which were selected not only for their size, but also for their proximity to elms that have succumbed to DED.

If Marks and his colleagues succeed in cultivating a DED-resistant American elm, this stately canopy tree may eventually be restored to its position in the highest strata of the floodplain forests in the Eastern United States and Canada. And though we may not be alive to see it regain canopy dominance, we can celebrate that the elm’s capacity for water uptake may reduce the severity of future flooding events, bald eagles may return to nest in its branches, and our children will once again walk to school beneath trees for which many American streets were named.

Perhaps this dream begins with the plump red buds bound – at this moment – for Ohio.

American elm flower buds. Photo credit: Gus Goodwin, TNC.

[i][ii] Christian Marks, personal communication, 9 March 2016.

Hannah Phillips is a first-year graduate student in the Ecological Planning Program. She is grateful to Christian Marks, Gus Goodwin, and The Nature Conservancy-Vermont, for welcoming her on this outing, to Mrs. Waters for offering samples from her tree, and to Chea Waters Evans for cleverly naming the tree Henrietta (after Henrietta Lacks).

Fire in the Swamp

Lake Drummond, at the center of the Great Dismal Swamp in southeastern Virginia. Photo by Jessie Griffen

Lake Drummond, at the center of the Great Dismal Swamp in southeastern Virginia. All photos by Jessie Griffen.

Tannins color the swamp water a rich, dark brown.

Tannins color the swamp water a rich, dark brown.

Coffee-colored water peels away from our boat, sending ripples across the glass surface of Lake Drummond. The ancient cypress trees begin to dance as our wake bends their reflections. We’re crossing this hidden, undeveloped lake at the center of a once-vast wetland stretching from southern Virginia across a million acres into North Carolina. Now the Great Dismal Swamp is reduced to (a still impressive) 110,000 acres, hemmed in by development. We have this otherworldly, placid coffee lake all to ourselves on an unseasonably warm December day.


As we approach the other side of the lake, the shoreline landscape changes abruptly from dense swamp to a vast swath of burnt toothpicks. In the past ten years, two massive wildfires have swept through the Great Dismal Swamp. The most recent fire in 2011, Lateral West, consumed 6,500 acres and burned for 111 days, despite 12.5 million dollars expended in suppression efforts1. Not even the torrential rains of Hurricane Irene could squelch the fire.

Yet the swamp is inundated for half the year. Its organic soil, peat, is 85-95% water in its natural saturated state, and well known for its ability to retain moisture. How can a peatland burn?

Fire, it turns out, has been a natural process in the Great Dismal Swamp for hundreds, maybe even thousands, of years. Peat, composed mostly of decaying plants, contains a lot of carbon—read: fuel for fire—compared to other soils. It’s so rich in carbon that high moisture content does not necessarily prevent combustion. Dry it out, and the whole swamp basically becomes a tinderbox. The water table in the Great Dismal Swamp fluctuates seasonally, normally falling below the soil from July through November. Lightning can ignite surface fires that smolder for months in the soil. Many of the plant assemblages in the Great Dismal Swamp actually depend on fires to persist. Lake Drummond likely formed from a massive peat fire1. But that’s not the whole story…

The shoreline of Lake Drummond changes abruptly to reveal a vast burn scar, a remnant of two large wildlifes that have seared the swamp in the past ten years.

The shoreline of Lake Drummond changes abruptly to reveal a vast burn scar, a remnant of two large wildfires that have seared the swamp in the past ten years.

In May 1763, George Washington visited the Great Dismal Swamp for the first time and saw opportunity where its first colonial discoverer, William Byrd, famously saw a “horrible desert…toward the center of it no beast or bird approaches, nor so much as an insect or reptile exists.” Washington invested in the swamp and began a long history of ditching and draining it for agriculture and logging.

Today, 158 miles of logging roads and ditches traverse the swamp, severely altering its natural hydrologic cycle. Parts of the refuge that were once seasonally saturated have been drained, and when peat is left dry for too long, it transforms to a granular, oxidized state that will not re-saturate, even under flooded conditions. Centuries of logging have left a legacy of fuel for fire in the form of slash. Add hotter, drier weather patterns to the mix, a few strikes of lightning, and the resulting blaze will be visible from space.

As climate patterns increasingly shift, what role will peatlands play in the global carbon cycle? In many peatlands, inundation slows the rate of decomposition, and carbon-rich organic soils slowly build up. The organic soils in the Great Dismal Swamp, for example, are over 51 inches deep in places. Many scientists view peatlands as an important carbon sink because they store carbon below ground for long periods of time. When peatlands burn, they release the stored soil carbon into the atmosphere as greenhouse gases, and peat fires often smolder for months, reaching deep into the thick peat—the Great Dismal Swamp lost over a 39 inches of organic soil in some areas in the 2011 fire2.

Peat fires are different from forest fires as we’re used to thinking about them. They are exceedingly difficult to extinguish, and the carbon emitted by burning soil can dwarf emissions from aboveground forest. The impact can be massive—Lateral West emitted much higher amounts of carbon per unit area compared to five other fires that burned mostly aboveground plants and trees2. In 1997, massive peat fires in Indonesia released an equivalent amount of carbon to 13-40% of the average annual global carbon emissions from fossil fuels3. And most of that carbon came from the soil.

The U.S. Fish and Wildlife Service, in partnership with The Nature Conservancy, has been working for years to restore the hydrology of the Great Dismal Swamp, and balance the benefits and risks of wildfire—an already complex task that is likely to be exacerbated by climate change. Who knew that draining a swamp could have such dismal consequences?

A final view of the Great Dismal Swamp.

A final view of the Great Dismal Swamp.


  1. Great Dismal Swamp National Wildlife Refuge and Nansemond National Wildlife Refuge Final Comprehensive Conservation Plan. (2006).
  2. Reddy, A. D. et al. Quantifying soil carbon loss and uncertainty from a peatland wildfire using multi-temporal LiDAR. Remote Sens. Environ. 170, 306–316 (2015).
  3. Page, S. E. et al. The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 420, 61–66 (2002).

Additional information gathered from The Nature Conservancy, the Washington Post report on Lateral West, and the U.S. Fish and Wildlife Service.

Jessie Griffen is a second year graduate student in the Ecological Planning Program. She is grateful to Dr. William Old and Levi Old for an amazing voyage into the Great Dismal Swamp.

The space between humans and cougars

Lions_painting,_Chauvet_Cave_(museum_replica) (1)

Panel of Lions, Chauvet Cave. Museum Reproduction. Licensed under Public Domain.

Two hundred feet above the lush Ardèche River in the south of France lies the barely visible entrance to a cave slotted between massive limestone cliffs. Narrow passageways connect multiple chambers that, once illuminated, reveal the unmistakable walls of Chauvet Cave, used 32,000 years ago by early humans who adorned this cave in paintings. The most famous panel: sixteen lions pursuing a herd of bison.

While the culture that painted these walls is long gone, and the species of lion depicted extinct, Chauvet Cave displays Paleolithic evidence of fascination with large feline predators. Did these people revere the formidable cave lion, fear it, or consider it sacred? Why did they feel compelled to illustrate these creatures in such lifelike detail when simply staying alive required most of their effort?

As we contend with the possible re-colonization by cougars, Puma concolor, of the eastern half of the United States, these ageless questions rise again. Why is our relationship with big cats so fraught, and why do we find them so captivating?

Underwater Panther, National Museum of the American Indian. Licensed under Public Domain.

Underwater Panther, National Museum of the American Indian. Licensed under Public Domain.

Native American tribes had specific and varied perceptions of cougars, ranging from fear to worship. Hopi tribes, dwelling in high Arizona desert, considered cougars fierce guardians of their people. Cheyenne tribal mythology tells the story of women suckling cougar cubs like children so that they would grow up and kill deer for the tribe to consume. Pueblo tribes historically boasted a band of hunters called “cougar men,” who used a cry that mimicked the cougars’ caterwaul. Tribes living in the Great Lakes region feared the underwater panther, a mythical monster with the body of a panther, the scales of a snake, deer antlers, and feathers of birds of prey. The underwater panther was a harbinger of death in some cultures; in others, its tail had healing powers. The skill and beauty of this animal inspired vivid stories and traditions in native cultures, casting the cougar as a fierce hunter, a strong guardian, and a worthy opponent.

While many Native American cultures respected cougars, European settlers took a more singular opinion of the animals, steeped in religious mistrust and a fear of large predators. When exploring Florida in 1565, M. John Hawkins wrote that, “there are lions and tygres as well as unicorns; lions especially.” In 1634, William Woods recounted to the New England Prospect that “some likewise being lost in the woods have heard such terrible rarings, as have made them much agast; which must eyther be Devills or Lyons.”

Elusive as unicorns and howling like devils, cougars did not stand much of a chance in the face of settlers imaginations. The Damned Thing, a short story written by Ambrose Pierce in 1893, casts the cougar as an invisible killer, unseen to the human eye, detectable only as it passes through grass. Aggressive hunting of cougars and their prey, along with deforestation of cougar habitat, decimated cougar populations in the eastern United States, extirpating them by 1881. Like exorcising an evil spirit from the body, European settlers eliminated what they could not comprehend.

Referenced as a “glamorous killer” by The New York Times in 2013, we now know much more about how these true carnivores live. Contributing to its near-mythical status, a single cougar once took 15 sheep overnight from one ranchers’ flock in Wyoming, seizing an opportunity for easy picking. When hunting, they use ultrasonic hearing, stalking prey and pouncing from close range. They aim to break the neck of their target from behind. If unsuccessful, cougars will literally go for the jugular. Cougars do not eat all of their prey at once—rather, they cache it, cover it in leaves and duff, and come back to feed intermittently. Family or pack cooperation while hunting is rarely observed, with the exception of mothers hunting for their young. That telltale grimace captured in photographs on many a cougar indicates the use of their “vomeronasal” organ on the roof of their mouths, an olfactory adaptation that helps them track prey. Surprisingly, there have only been around 100 attacks on humans, and 20 fatalities in the U.S. and Canada since 1890.

After a long absence, some evidence points to a resurgence of cougars in the Northeast. Sue Morse, a naturalist who studies predators in Vermont, proposes that the cats making the push eastward are transient tomcats and younger males, looking for a home territory as populations increase in the west. Reforestation and the reestablishment of a prey base in the Northeast over the last 400 years has enabled cougars to return. Since the late 1990s, cougar sightings, scat, and paw prints have been recorded in multiple eastern states and provinces, including Connecticut, Massachusetts, Maine, New Brunswick, West Virginia, Vermont, and Quebec.

Many conservationists remain thrilled about the return of this fabled predator, once the most widely dispersed animal in the Western hemisphere. General understanding of cougars in the east remains limited and dominated by curiosity, but Clary Nielsen of Cougar Net, a nonprofit research organization dedicated to studying cougars, thinks that with an influx of cougars, attitudes are probably going to change. It is difficult not to worry for them, foolish as it may be to worry for an animal perfectly adapted to kill. What if what happened in the 19th century happens again, and the tides turn from fascination to vengeance?

Cougars, at a glance, are everything that humans are not. Silent, graceful, and agile, they pass through the world largely unnoticed until it is far too late for their quarry. Does our fascination with big cats stem from a desire to understand something truly wild, both frightening and beautiful? Or does our imagination, lacking in details, turn the cougar into something mythical, and ourselves into its prey? Human beings, so culturally different today from our ancestors 32,000 years ago, display an easy dominance over the animal kingdom. And yet, predators unseen still possess a certain unpredictable allure.

Photo: K Fink - NPS. Licensed under Public Domain

Photo: K Fink, NPS. Licensed under Public Domain

Chris Bolgiano, a nature writer who has written and contributed to multiple books on cougars, suggests that we anticipate their arrival because it would exonerate us from the guilt humans feel from abusing the natural world and extirpating animals like the cougar. But perhaps it is our own primal desire, carried through millennia, that longs to see cougars and their inimitable power. Both magnetic and frightening, the presence of the cougar might be the closest that we come to redemption.

Information gathered from: Keeping Track, Vermont Public Radio, Cougar NetThe New York Times, Mountain Lion: An Unnatural History of Pumas and People, by Chris Bolgiano, and The Eastern Cougar, edited by Chris Bolgiano and Jerry Roberts.


Lyra Brennan is a first-year student in the Ecological Planning Program

Measuring Sense of Place

Looking west toward Hunger Mountain - a popular hiking destination. Recreation, as well as many other activities, increases the amount of time we spend in a particular place, which may lead to stronger environmental concern.

Looking west toward Hunger Mountain – a popular hiking destination. Recreation and other activities increase the amount of time we spend in a particular place, which may lead to stronger environmental concern.

Take a moment and think of the place in which you find yourself right now. No matter the location, there are seemingly infinite ways to develop a connection to a particular place. For example, you may depend on your surroundings to provide basic needs, or maybe the connection has developed from an emotional attachment or your identity. It seems reasonable to assume that if you’ve developed a strong connection to a place, you’d be more concerned about environmental issues specific to that area, and more willing to act on that concern. But how can we quantify something that is as complex and contextual as “sense of place”?

Researcher Asim Zia from the University of Vermont and his team of colleagues set out to answer that question with a grant funded by National Science Foundation. Their study focused on potential relationships between strong sense of place, environmental concern, and citizen action.

Measuring sense of place can be approached objectively or subjectively. Zia and his colleagues point out that pure objectivity and pure subjectivity lie on either end of a continuum. There’s no clear answer as to which approach would more closely represent an accurate measurement of sense of place (see table below for an example of a simplified framework describing these two approaches). They set out to find an integrative approach that falls along this continuum and is based on measurable reports of observable phenomena.


To better understand a person’s environmental concern, the research team used a conceptualized version of ambit. Ambit represents an individual’s periphery of their movements measurable over a period of time in relation to a home place. For example, over the course of a week, a UVM graduate student’s ambit may be focused mostly around their apartment in Burlington, then emphasis is given to school campus, favorite coffee shop, Lake Champlain, City Market, a friend’s house, etc. The particular places outside of the home can be quantified in terms of distance, weighted with time spent and frequency of trips.

In an attempt to measure ambit, the researchers surveyed 74 residents of Silicon Valley in California.  The survey aimed at eliciting respondent’s memory of trips taken over the course of a year. The resulting data suggested 5.07% less time spent for every 10 miles distance away from home. Even though respondents spent more time closer to home, the amount of time per distance from home varied greatly. This led to the rejection that concern is an objective function of weighted distance alone. Therefore, it is also inherently subjective, for example, through long distance trips to visit family or coral reefs.

Survey respondents also reported on their level of activism and attendance at community meetings. Zia used this information to explore the relationship between ambit-based measure of sense of place and community action. The data suggested respondents who spend a higher weighted average of time closer to home (i.e. higher sense of place) are more likely to participate in community action. The researchers point out that these findings are not necessarily generalizable, however future empirical research could shed more light on ambit-based sense of place. For example, GPS data or agent-based modeling – in addition to surveys – would provide a more robust set of data regarding individual movement between particular places, and shifting environmental concern as a function of such mobility.

Zia and his colleagues provide clear insight into the importance of proxies, such as their proposed ambit-based, sense of place theory: “As we work to develop new formal and informal institutions for dealing with problems that both exist in places and cross the boundaries of established spaces, it will be increasingly important to know something about people’s contours of meaningful place attachments as experienced on the ground.”

Sam Talbot is a second year student in the Ecological Planning Program. 


Zia, Asim, et al. “Spatial discounting, place attachment, and environmental concern: Toward an ambit-based theory of sense of place.” Journal of Environmental Psychology 40 (2014): 283-295.

Monarchs Head South Toward an Uncertain Future

MonarchMontage-BryanPfeifferIf I went outside right now, hopped in the car, and started driving, it would take me 45 hours to reach the Monarch Butterfly Biosphere Reserve in Michoacán, Mexico, some 2,823 miles away. Though I badly want to see the groves of sacred firs (Abies religiosa) quivering and dripping with orange and black wings, I’m not leaving today. For now, I am content to have witnessed one of this year’s migrants emerge from its chrysalis.

When I first saw the chrysalis I thought the tiny, metallic gold markings seemed suspiciously intricate for a mere caterpillar’s changing room, and peered at them as if they might instead be explained by sci-fi alien manufacture. Apparently, these spots allow oxygen to reach the developing structures and organs of the enclosed butterfly.

The next morning, in the span of about 15 minutes, this female butterfly inched downward out of her chrysalis, re-distributed fluids from her distended abdomen to unfurling wings, and washed her face in preparation for what was to come. Her autumn journey to the Transvolcanic Mountains of central Mexico— if she can complete it—will take two months. To put this voyage in perspective, it is around seven times the distance traveled by caribou as they migrate from summer habitat to winter haunts. Caribou are billed as the land mammal with the longest migration in North America, whereas the Monarch is a butterfly whose flight has been described as “slow and sailing.”

monarch-1280x920The spring migration of Monarchs to New England is carried out by five different generations, each pushing north at distances more commensurate with their two-to-four-week lifespan and the floating nature of their flight. Monarchs hatched in late summer are among the generation that will live for several months to travel an incredible distance by putting their reproductive tendencies on pause, or rather, on diapause.

Diapause for the Monarch is a sort of flying hibernation that allows the butterfly to extend its lifetime, endure migration, and make it through the winter. Unlike hibernation, however, only specific environmental conditions can induce an organism to enter or exit diapause. In the case of a Monarch, when the days are long enough and the temperatures are just right, the overwintering butterfly shakes herself reproductively awake, mates, and then travels a few hundred miles north to lay her eggs on milkweed before dying.

Sadly, the odds for our particular young Monarch and her progeny are dismal. She faces habitat loss, changing environmental cues, invasive species and car windshields along the many miles of her journey. The population of Monarchs east of the Rockies is estimated to have declined by 90% since its level in 1995.

Nevertheless, government agencies, non-profit organizations, and concerned citizens are mobilizing to try to prevent the migratory Monarch’s extirpation. As with many environmental issues, large-scale actions such as policy change will be crucial. However, because the plight of the Monarch also plays out in our backyards, opportunities to help are close to home. You can plant native milkweeds to benefit individual butterflies. You can join other citizen scientists in supplying data to strengthen and inform the measures we take to protect Monarchs; check out monarchwatch.org.

The first, beautiful moments of a young female Monarch reawakened my awe and concern for this species. Instead of being crushed by the terrible thought that, if Monarchs were to go extinct, this mystical experience might become a mythical one, I am spurred to share the urgency of the situation. Urgency is more powerful when it is underpinned by wonder. And though this combination might seem like a fragile set of wings with which to entrust the fate of a species, I take comfort in the thought of Monarchs fluttering south towards Mexico, unfazed.

Anya Tyson is a first-year Field Naturalist student

Field Notes 2015: Human Nature and The End of Nature

Screen Shot 2015-09-07 at 2.31.05 PMNature is in peril. Biodiversity is plummeting. Species are going extinct 100 to 1000 times faster than normal. How many times have you read an introduction beginning that way? It’s depressing because it’s true. The ensuing article or book usually offers plenty of advice on what actions we must take to stem the tide of extinction and climate change and how to convince the uninformed public to care about it. But what about us — conservationists who already care about the deterioration of the natural world as we know it and who struggle with it emotionally? How can we find solace?

The current issue of Field Notes, the annual publication of UVM’s Field Naturalist and Ecological Planning programs, reflects on how we can continue to delight in nature even as we stare these sobering environmental issues in the face.

Read or download the issue »

Skip to toolbar