Evergreen and Everlasting: The Long March of the Lycophytes

Artist’s rendering of a Carboniferous swamp. From “The World Before the Deluge” by Eduard Riou, 1872. Public domain work of art.

Artist’s rendering of a Carboniferous swamp. From “The World Before the Deluge” by Eduard Riou, 1872. Public domain work of art.

In the murky, humid forests of the Carboniferous Period, organisms grew to remarkable size. Dragonflies as big as Cooper’s hawks ruled the air and three-foot-long scorpions prowled the earth. The swampy water concealed beasts like the dawn tadpole, a predatory amphibian as long as a pickup truck. The canopy showcased elegant tree precursors: spore-bearing lycophytes a hundred feet tall.

Today, dragonflies are rarely any bigger than a clothespin. Tadpoles are tiny and harmless, and scorpions could fit in your palm (not that you’d want them there). This widespread diminution may be related to a dramatic decrease in atmospheric oxygen concentration since the Carboniferous. Even the lycophytes have had to shrink to survive. Yet three hundred million years after their age of supremacy, lycophytes persist in forests from the poles to the tropics. We call them clubmosses. They are usually less than four inches tall.

In early November, clubmosses leap into view on the forest floor, bright green runners in a matrix of brown. These evergreen plants are not actually mosses, but true vascular plants more similar to ferns and horsetails. At first glance they are easily mistaken for conifer seedlings; hence the common names ground pine and ground cedar. Lateral stems called rhizomes carry them across the ground. Periodically they send up vertical shoots, which emerge out of the leaf litter to capture sunlight. Having evolved before the seed, clubmosses disperse by means of spores, which most species carry in tiny kidney-shaped pouches packed together on a club-like appendage called a strobilus.

Ground pine (Lycopodium obscurum) with strobilus.

Ground pine (Lycopodium obscurum) with strobilus.

Wind-borne clubmoss spores are easily dispersed, but they have a long road and two life phases ahead of them. After germination, spores develop into tiny, often subterranean organisms called gametophytes. The gametophyte phase is responsible for the production of sex cells, which join at fertilization to form embryos. The embryos develop into the second life phase: sporophytes, charged with the production of new spores. This is the more familiar life phase we see above ground. Note, however, that not every clubmoss has a club: years may pass before sporophytes are capable of manufacturing new spores. Development from the gametophyte to the mature, strobilus-endowed sporophyte can take between six and fifteen years.

Clubmoss spores ripen in the fall, when a light tap to the strobilus is enough to release them. If you stroll through a miniature forest of lycophytes at this time of year your feet will stir up a cloud of gold. This fine powder has been put to use in a litany of applications: as a wood-filler in violins and guitars, a lubricant on condoms and surgical gloves, a hydrophobic coating for pills, and a homeopathic remedy for intestinal disorders. Crime scene investigators once used the spores to dust for fingerprints. The powder is highly flammable; early flash photography relied on the ignition of clubmoss spores. We have incorporated the spores into fireworks and magic tricks, theatrical productions and military operations. For more routine combustion, we turn back to the clubmoss’s progenitors: the giant lycophytes that ruled the swamps of the Carboniferous are burned today as coal.

Ground cedar (Diphasiastrum digitatum) with branched strobili.

Ground cedar (Diphasiastrum digitatum) with branched strobili.

Vermont’s woods can seem a little dull this time of year. Perhaps it will enliven your walk if you pause to remember that you are in the presence of prehistory. The tiny clubmosses at your feet have thrived on earth for hundreds of millions of years. With every step you are releasing spores that could have sealed a violin or cured a stomachache or solved a crime. Instead, because of you, they’ll go on to form a new generation of this enduring lineage.

Information gathered from Cathy Paris, Bernd Heinrich’s The Trees in My Forest, Mary Holland’s Naturally Curious, Encyclopaedia Britannica (retrieved from http://www.britannica.com/science), and Biology of Plants by Peter H. Raven, Ray F. Evert, and Susan E. Eichhorn.

Julia Runcie is a first-year student in the Ecological Planning program.

Hardy Kiwi: Delicious, Decorative, Destructive

Hardy kiwi vines on forest trees.

Hardy kiwi vines on forest trees.

By Jessie Griffen

While living and working at a yoga retreat center in western Massachusetts for the summer, I learned to meditate during exercise. In early August, with the end of the field season in sight and too much left to do, I jogged trails that I still needed to map. As I ran, my mind noted small observations about the forest: a patch of partridge-berry here, huge hemlocks there. Instead of focusing on these thoughts, I tried to only notice them and let them pass by. But as I turned a corner on a trail through hardwoods, downed branches and trees startled me into active observation.

A mat of green vines with distinctively red petioles blanketed the understory, and wound ominously up trunks. Stunned by the scene, I halted. A group of walkers noticed me staring. They asked jokingly if I was searching for bears. I mentioned the vines, but didn’t want to explain what I had found: hardy kiwi. Continue reading

Field Notes 2015: Human Nature and The End of Nature

Screen Shot 2015-09-07 at 2.31.05 PMNature is in peril. Biodiversity is plummeting. Species are going extinct 100 to 1000 times faster than normal. How many times have you read an introduction beginning that way? It’s depressing because it’s true. The ensuing article or book usually offers plenty of advice on what actions we must take to stem the tide of extinction and climate change and how to convince the uninformed public to care about it. But what about us — conservationists who already care about the deterioration of the natural world as we know it and who struggle with it emotionally? How can we find solace?

The current issue of Field Notes, the annual publication of UVM’s Field Naturalist and Ecological Planning programs, reflects on how we can continue to delight in nature even as we stare these sobering environmental issues in the face.

Read or download the issue »

Beyond the Jeep Road Sits Coyote — Wilderness in 2015

Southwestern desert

Southwestern desert

By Levi Old

On the first day of a 90-day expedition, our team made camp at the end of a jeep road. The afternoon sun, low in the sky, blanketed the desert’s red and orange rocks. Daylight quickly shifted into dusk. The rocks faded into shapes, and dropped shadows on slick rock in the crescent moonlight. The wind-worn surfaces that stood so vibrant in daytime were gone.

After dinner and a meeting about the next day’s plan, we embraced the opportunity to sleep out in the open. I found a flat boulder, climbed into my sleeping bag, and looked up at the night sky. The 10 students wandered around searching for sleeping spots, chatting with nervous anticipation and preparing their new equipment for a night’s rest.

“I bet this never gets old,” said Ben, 20, from Wyoming.

“Seriously,” agreed Lily from New York, “I’ve never seen stars like this before.”

I peeked over the lip of my sleeping bag and noticed the students gazing at the night sky.

The two college students traveled far from their comfortable existences to attend a three-month wilderness leadership course in the heart of the southwestern desert. Along with my colleague, I was their instructor. Around us, there was a more distinguished instructor— wilderness. Continue reading

In Search of New England’s Sequoia

By Sam Talbott

Photo page 2I inherited many things from my dad: blue eyes, an affinity for two-cylinder engines, and a passion for woodworking. A set of long-handled carving tools made the journey north from Massachusetts to Vermont with me. I left behind a stout wood lathe, a former resident of the local vocational high school. Between its dark-green metal housing and the exposed 2×4’s of the garage is a well-kept pile of saw dust and wood chips.

If you were to plunge a soil auger into this pile, you’d see a resemblance to “varves” left behind by freezing and thawing cycles of glacial Lake Vermont. Large wood chips give way to fine sawdust—evidence of increasing from 60 to 400 grit sandpaper. The red layers are not redoximorphic reactions, but rather the presence of redwood, Honduran rosewood, and other species not found in the typical New England northern hardwood forests. Continue reading

Zombie Aspen Leaves

populusleaves-550x410By Bryan Pfeiffer

Rotting and fallen to earth, they might appear dead. But they are not quite dead. They are the undead: zombie aspen leaves.

Find them as you walk the brown autumn paths – yellow leaves with a patch of green tissue radiating from the base of the midrib. Here in Vermont, these are mostly quaking aspen (Populus tremuloides), but I also find the green on big-toothed aspen (P. grandidentata) and, rarely, eastern cottonwood (P. deltoides).

When a friend and I first encountered these some years ago, I collected a few and queried a handful of smart botanists for answers. Many had theories; none had an explanation. It wasn’t until I put a leaf under a dissecting microscope that I found the explanation to be less zombie than something from the film “Alien.” The beast lies within.

populus-caterpillar-moth-550Residing in a tiny pocket of tissue near the base of the green patch is a translucent caterpillar not much more than 2 millimeters in length. It’s feeding in there; I could see the frass (caterpillar poop). With help from Dave Wagner, the renowned entomologist at the University of Connecticut, our critter turns out to be a moth in the family Nepticulidae, probably Ectoedemia argyropeza or most certainly a member of that genus.

“The really cool thing is that the larva secretes an anti-senescent substance that keeps part of the leaf alive – probably a cytokinin,” Dave wrote in an email. Cytokinins are plant hormones that promote cell division. In this case, it seems, the caterpillar keeps part of a leaf alive so that it can keep eating.

This moth is also parthenogenetic; females can produce fertile eggs without help from males, which, as it turns out, are quite rare.

For now, however, the caterpillar will continue to dine in the verdant patch of an otherwise dead leaf. It will pupate for winter. And the tiny adult will emerge to fly in spring. Many species in this genus are black and white with orange scales around the head. But don’t expect to find one. Your best bet for discovering this animal is to watch the trail for patterns in poplar leaves this fall.

And if you’re raking them up, please note that some of those leaves, well, they could be saying, “I’m not dead.”

The Paradox of Sugaring

By Laura Yayac

saptap (1)It flavors creemees, cotton candy, and liqueurs. It’s poured over pancakes and snow, and is used in countless recipes. And right now, the raw sap is running from trees into buckets and webs of tubing then onto sugarhouses, where it’s boiled into maple syrup in all its amber glory.

Sap runs when the nights are cold and the days warm, but something about this does not make sense.

Before I get to that, though, a bit of history. European settlers learned about maple sugaring from native tribes, who in turn have a variety of legends as to how they discovered that maple sap could be boiled into a liquid sugar. Written accounts of maple tapping date from the 1550s, and it isn’t just people who love maple syrup. One of the explanations for human discovery of syrup is watching red squirrels (Tamiasciurus hudsonicus). These critters have been documented using their teeth to cut into sugar maples, then returning over the next few days, after much of the water has evaporated, to lick the sweet blobs that are left behind. Continue reading

Winter Blooms

By Matt Pierle


Cabin fever have you ready to see flowers again? If so, you’ve got options: Brazil and Bali are nice this time of year. Or seek out plants at a world-class botanical conservatory in, say, Montreal, London or San Francisco.

If you’re short on time or prefer shoestring travel though, you could do what I did over spring (technically late winter) break and book a $26 ticket on the Megabus from Burlington to Boston. From South Station Boston walk north to Chinatown, through Boston Common, past the frozen Frog Pond, to the Longfellow Bridge, over the Charles River to Cambridge and kick it up Broadway to Harvard Street. Continue north all the way to the Harvard Museum of Natural History.

In bloom you’ll find the extensive Ware Collection of Glass Models of Plants created by Czech born Leopold Blaschka and his son Rudolf. Most people simply call the collection “The Glass Flowers.” You read that right. This collection is not of flowers under glass, it is of flowers made of glass.

These life-size and larger-than-life specimens are more than impressionistic representations of garden blossoms; they are über-accurate botanical sculptures of a diversity of wild and cultivated plants. The pieces will challenge your powers to believe that something so realistic could be made from inert, colored sand. Continue reading

Beyond a Collection of Facts

By Clare Crosby


I spent my childhood hosting acorn cap tea parties for fairies, scurrying on calloused feet to collect eggs from the chicken coop, and reenacting Little House on The Prairie in the meadow behind my house, just east of Austin, TX. I did not suffer from “Nature Deficit Disorder.”

But as I grew, my interests shifted. I traded the meadow for well-manicured athletic fields and our old pond for swimming pools. My interest in my Central Texas natural surroundings paused around 8 years old. I never figured out what species of oak provided teacups for my parties, only that the caps were nicely proportioned for fairies. Neither did I learn what type of moss my fairies used for seat cushions, only that it opened into minute stars under sprinkled water.

I’m embarrassed now, as a naturalist, to admit that I don’t know even some of the most common species of my home state. This lack of knowledge, however, offers opportunity when I return to Texas from Vermont, the home of my formal ecological education. As I walk old trails and come across a familiar (yet unknown) tree, my inclination is to turn to field guides or a trusted expert to tell me what to call it, who eats it, and what it might reveal about the soil beneath it. In Vermont, I have had a string of wonderful professors and peers to teach me about the natural world, assisted, of course, by an ever-growing library of field guides. I hope to be so lucky again in Texas. Continue reading