Secrets of The Vault

Sean and I are in The Vault. We’ve been here for a while—hours now. It’s less grandiose than it sounds, really just a back room in the Charlotte Town Hall, but it gives me the same feeling I get from the New York Public Library or a fancy art museum. Tread lightly, the walls are saying. Look closely. We have secrets for you.

Inside The Vault. Photo by Samantha Ford.

Inside The Vault. Photo by Samantha Ford.

What’s amazing is that the secrets of The Vault are not really secret at all. Every document in the room is in the public record, even the original map of the Town of Charlotte, hand-drawn in 1763. The massive red books of land records, the card catalogues of births and deaths—these pages of history are not preserved behind glass; we are perfectly free to look at them. I can reach out a hand, every now and then, to gently trace this two-hundred-and-fifty-year-old calligraphy.

We’re here to research the UVM Natural Area at Pease Mountain, a prominent hill directly west of the Charlotte Town Hall and just north of Mount Philo along the Champlain thrust fault. This semester, our cohort is performing a Landscape Inventory and Assessment of the area. We’ve spent several weekends strolling along the mountain’s broken quartzite ledges, and we’re starting to get a sense of the property’s natural resources. The soil is thin but rich, patterned here and there with the frostbitten remains of last year’s hepatica leaves. The trees are not the usual beech-birch-maple assortment we expected, but a variety of species used to warmer, drier climates: peeling trunks of shagbark hickory, gnarled red oaks, bitternut hickories with their sulfur-yellow buds. We’ve noticed hints of other mysteries: a road cut here, an old stone foundation there. UVM acquired the property in 1949; Sean and I want to know who has owned Pease Mountain–and what it’s been used for–as far back as the town’s records go.

20160329_105958

First subdivision of the town of Charlotte.

We start by looking in the Index, a twenty-pound tome containing a list of every land transaction undertaken in Charlotte until the book ran out of pages around 1960. Thankfully the Index is alphabetized and we quickly find the record we need: “Jeanette S. Pease Phelps and George J. Holden to University of Vermont and State Agricultural College.”

I’m immediately absorbed in the web of archaic legalese that follows: “Now, know ye, That pursuant to the license and authority aforesaid, and not otherwise…We do by these Presents, grant, bargain, sell, convey and confirm unto the said University of Vermont…the following described land…Being Pease Mountain, so-called, in the town of Charlotte.” The deed was written barely more than half a century ago, but it reads like something from the middle ages. The solemn tone is compelling. I can picture the occasion, the buyers and sellers grouped around a table, poised to sign below the words, “In witness whereof, we hereunto set our hands and seals…”

Original charter of the town of Williston. Photo by Samantha Ford.

Original charter of the town of Williston. Photo by Samantha Ford.

We follow the trail further and further back, tracing property descriptions bounded by increasingly vague terms: “…to the N.E. corner of said lot to a maple stump with a cedar stake in said stump. Thence southerly on the west line of said owned by Everett Rich to a cedar stake & stones in the S.E. corner. Thence westerly on the north line…” The record books get thinner as we travel back in time, the pages more brittle, the writing fainter. Eventually we find ourselves scrutinizing a gridded map: the second subdivision of the town.

Accompanying the map with its numbered parcels, we find a list of the original owners of those parcels. Lot number 1, which at the time encompassed most of Pease Mountain, is ascribed to “Glebe for the Church.” We puzzle over this. Who was Glebe? We haven’t heard any mention of him in more recent deeds. Was he a minister?

Glebe for the Church. It sounds like a momentous designation. We finally think to Google the strange phrase, and we discover the ancient tradition of glebe land. It’s not a person after all, but a kind of conservation easement. When Vermont’s first towns were established, certain plots of land were set aside to remain undeveloped. These lands were leased to farmers or timber harvesters in exchange for a rental fee, which paid for municipal costs or, in this case, the upkeep of the parish. For hundreds of years, Pease Mountain was preserved by this tradition.

Mysterious stone structure found on Pease Mountain.

One of several mysterious stone structures found on Pease Mountain.

As we leave the Town Hall, Sean and I glance up at Pease. Our journey through the handwritten history of Charlotte has given us a deeper sense of this place. As we’ve walked there with our cohort we’ve mapped natural communities and forest stands, discovered vernal pools and views over the lake. But walking and looking can only take us so far back. Beyond the oaks and hickories, the purple cliffs, the porcupine and bobcat dens, there is another Pease Mountain story. It’s no longer legible in the landscape. But luckily for us, it’s all written down in the record books.

Julia Runcie is a first-year student in the Ecological Planning program.

Field Naturalist Alicia Daniel Featured in Burlington Free Press

alicia1

Alicia Daniel, Burlington’s Field Naturalist, on Long Pond. Photo by Kerstin Lange.

Suppose you were a mink in need of breakfast in Burlington.  Where would you go?

Alicia Daniel, Field Naturalist for the city of Burlington and 1988 graduate of the FNEP program, could probably tell you. Follow Alicia (and the mink) in the recent Burlington Free Press article “Burlington’s wild heart,” written by FNEP graduate Kerstin Lange.

Evergreen and Everlasting: The Long March of the Lycophytes

Artist’s rendering of a Carboniferous swamp. From “The World Before the Deluge” by Eduard Riou, 1872. Public domain work of art.

Artist’s rendering of a Carboniferous swamp. From “The World Before the Deluge” by Eduard Riou, 1872. Public domain work of art.

In the murky, humid forests of the Carboniferous Period, organisms grew to remarkable size. Dragonflies as big as Cooper’s hawks ruled the air and three-foot-long scorpions prowled the earth. The swampy water concealed beasts like the dawn tadpole, a predatory amphibian as long as a pickup truck. The canopy showcased elegant tree precursors: spore-bearing lycophytes a hundred feet tall.

Today, dragonflies are rarely any bigger than a clothespin. Tadpoles are tiny and harmless, and scorpions could fit in your palm (not that you’d want them there). This widespread diminution may be related to a dramatic decrease in atmospheric oxygen concentration since the Carboniferous. Even the lycophytes have had to shrink to survive. Yet three hundred million years after their age of supremacy, lycophytes persist in forests from the poles to the tropics. We call them clubmosses. They are usually less than four inches tall.

In early November, clubmosses leap into view on the forest floor, bright green runners in a matrix of brown. These evergreen plants are not actually mosses, but true vascular plants more similar to ferns and horsetails. At first glance they are easily mistaken for conifer seedlings; hence the common names ground pine and ground cedar. Lateral stems called rhizomes carry them across the ground. Periodically they send up vertical shoots, which emerge out of the leaf litter to capture sunlight. Having evolved before the seed, clubmosses disperse by means of spores, which most species carry in tiny kidney-shaped pouches packed together on a club-like appendage called a strobilus.

Ground pine (Lycopodium obscurum) with strobilus.

Ground pine (Lycopodium obscurum) with strobilus.

Wind-borne clubmoss spores are easily dispersed, but they have a long road and two life phases ahead of them. After germination, spores develop into tiny, often subterranean organisms called gametophytes. The gametophyte phase is responsible for the production of sex cells, which join at fertilization to form embryos. The embryos develop into the second life phase: sporophytes, charged with the production of new spores. This is the more familiar life phase we see above ground. Note, however, that not every clubmoss has a club: years may pass before sporophytes are capable of manufacturing new spores. Development from the gametophyte to the mature, strobilus-endowed sporophyte can take between six and fifteen years.

Clubmoss spores ripen in the fall, when a light tap to the strobilus is enough to release them. If you stroll through a miniature forest of lycophytes at this time of year your feet will stir up a cloud of gold. This fine powder has been put to use in a litany of applications: as a wood-filler in violins and guitars, a lubricant on condoms and surgical gloves, a hydrophobic coating for pills, and a homeopathic remedy for intestinal disorders. Crime scene investigators once used the spores to dust for fingerprints. The powder is highly flammable; early flash photography relied on the ignition of clubmoss spores. We have incorporated the spores into fireworks and magic tricks, theatrical productions and military operations. For more routine combustion, we turn back to the clubmoss’s progenitors: the giant lycophytes that ruled the swamps of the Carboniferous are burned today as coal.

Ground cedar (Diphasiastrum digitatum) with branched strobili.

Ground cedar (Diphasiastrum digitatum) with branched strobili.

Vermont’s woods can seem a little dull this time of year. Perhaps it will enliven your walk if you pause to remember that you are in the presence of prehistory. The tiny clubmosses at your feet have thrived on earth for hundreds of millions of years. With every step you are releasing spores that could have sealed a violin or cured a stomachache or solved a crime. Instead, because of you, they’ll go on to form a new generation of this enduring lineage.

Information gathered from Cathy Paris, Bernd Heinrich’s The Trees in My Forest, Mary Holland’s Naturally Curious, Encyclopaedia Britannica (retrieved from http://www.britannica.com/science), and Biology of Plants by Peter H. Raven, Ray F. Evert, and Susan E. Eichhorn.

Julia Runcie is a first-year student in the Ecological Planning program.

Skip to toolbar