Vermont’s State Musician

 

“Is that a bird?” asks one of my fellow Field Naturalist Interns, as we stand on an outcropping at Raven Ridge Natural Area in Huntington, Vermont. When I told him that the song he was hearing was that of the Hermit Thrush he said that he had “never heard a bird sound so much like music”. I had never really considered the musical elements of birding before this comment and then felt compelled to look into the compositional stylings of the Hermit Thrush.

This medium-sized member of the genus Catharus (which also happens to be the state bird of Vermont) sings a song that is perhaps that most magical string of notes I have ever heard. Being somewhat of a musician and much more of a birder, I love listening to the song of the Hermit Thrush with its melodic, tumbling trills, like a flute harmonizing with itself. According to a number of auditory studies, the notes of the song of the Hermit Thrush are related to each other by pitch ratios that differ by simple integers of harmonic notes [1]. This discovery highlights the fact that the song is more similar to music produced by humans than to the songs of other birds that have also been studied in this way. It is also noted that certain harmonies produced by the Hermit Thrush are in line with those made by human music [2]. On top of all this musical jargon, it has also been discovered that this bird could be capable of producing other notes in its song, meaning that the species chose to sing in such an ethereal harmony.

You don’t need to have a musical background to appreciate the sounds of nature, the birds singing, the creaking of young trees as they sway in the wind, the croaking of a distant frog, or a stream gurgling and dripping down a mountainside. Among all of these sounds, however, nothing resembles music quite as closely as the song of the Hermit Thrush.

Hear it for yourself! https://www.allaboutbirds.org/guide/Hermit_Thrush/sounds

Emily Hamel is a rising UVM senior and Wildlife Biology major taking part in a undergraduate field naturalist pilot program this summer.

 

[1] https://www.newscientist.com/article/dn26498-thrushs-song-fits-human-musical-scales/

[2] http://www.smithsonianmag.com/science-nature/birds-songs-share-mathematical-hallmarks-human-music-180953227/?no-ist

 

The Hidden Gems of Lake Michigan

Hexagonaria_percarinata_close_view

A professionally polished Petoskey stone, similar to what you would find for sale in shops throughout Michigan.  The diagram in the corner indicates scale. Photo by Dr. Mark Wilson of the College of Wooster, Ohio, via Wikimedia Commons.

This summer, transport yourself to the eastern shore of Lake Michigan, near the town of Petoskey, and perform a geological magic trick. Take a chunk of limestone on the beach – bland, grey and completely featureless – and dip it into the lake. Stare into the translucent depths at your chosen stone and watch distinctive hexagonal patterns emerge on the surface. But a funny thing happens when you pull the stone out of the water and let it dry in the sun – the markings abruptly vanish! What’s going on here?

As you might have suspected by now, this is no ordinary piece of limestone. Instead, you’ve stumbled across a Petoskey stone, beloved by geologists and beachcombers alike. Like all magic tricks, however, there is indeed a simple explanation for the vanishing act, impressive as it appears on first viewing. In this case, our mysterious rock’s origins in the distant past owe just as much to the animal as the mineral.

Four hundred million years ago in the Devonian era, Lake Michigan did not exist, but there was no shortage of water in the area. A wide, shallow tropical sea covered the area, home to a diverse array of bizarre-looking marine life: horseshoe crab-like trilobites, spiraling ammonites, brachipods and other shellfish, the first jawed fishes, sprawling crinoids and crustaceans. (When T.S. Eliot has J. Alfred Prufrock mutter, “I should have been a pair of ragged claws / Scuttling across the floors of silent seas,” he was probably thinking of the Devonian.)  It was also a golden age for coral, including one family – now extinct – known as rugosans, or “wrinkled,” on account of their distinctive appearance.

While many of these rugosan corals were solitary polyps, other species opted for a more communal approach. They massed together, forming vast reefs similar to the ones we see in our own era off Hawaii or Australia.  One of these colonial coral species, Hexagonaria pericarinata, was particularly abundant around the future home of Petoskey, Michigan. As the scientific name suggests, these corals were highly symmetrical, with each animal forming distinctive six-sided walls as it tried to occupy the maximum possible space against its many neighbors. (Unlike the rigid chambers you see in honeycombs, you’ll often find five, four, or even three-sided corals who just couldn’t grow up fast enough to compete with their more aggressive counterparts, or asymmetrical hexagons formed by polyps that got “squashed”.)

When individual polyps died, others grew on top of them and the cycle repeated. Eventually, whole reef conglomerates were buried by ocean sediments in the shifting seas. Time and pressure transformed the coral and sediment matrix into calcium-rich limestone, the coral polyps preserved as flattened outlines of their former, three-dimensional selves in the rock. Each polyp’s alimentary canal became a dark speck that forms the “eye” of each hexagon; the lines that radiate outward from the center mark where tentacles were located.

Fast forward to twelve thousand years ago in the Pleistocene. The tropical ocean vanished long ago, replaced by bare stone and a wall of glaciers three miles high. As the glaciers advanced and retreated, they scoured the bedrock, kicking up chunks of the limestone reefs and gouging out the depression that would fill with meltwater and become Lake Michigan. Rounded and sculpted by water, the fossilized coral fragments were moved by centuries of robust freeze-thaw cycles southward in the lake, occasionally washing up on beaches tens or even hundreds of miles away from their original site.

Dubbed “Petoskey stones” because of their abundance on the beaches and bedrock of Petoskey, Michigan, these stone corals are ubiquitous in gift shops throughout the state. You can find their likeness on a number of “Petoskey tchochkes” including magnets, bumper stickers and t-shirts, so residents and tourists alike can proclaim their love. As a sign of their distinctive popularity, Petoskey stones have been the official state stone of Michigan since 1965. They remain a source of local pride and a prize find during any lakeside stroll. Most stones you find on the beach are tiny, but huge storms can wash five, ten, or even twenty pound specimens out of the lake overnight.

Why are they easier to spot in water? The contrast between the slightly lighter crystals of fossilized coral body (calcite) and the surrounding stone is greatest when wet, making them easiest to detect underwater or well within the splash zone of the lake. (Further away from the lake shore, less discriminating rockhounds opt for spittle or other body fluids as a way to test their finds.) Some stones will naturally keep their appearance without water or any further treatment, but most of the stones available for sale have been professionally polished to ensure that the distinctive hexagons remain visible even when dry.

You can replicate the same look on stones you find on the shore with some fine-grit sandpaper, elbow grease, and a little toothpaste and velvet cloth for polish. Limestone is soft and easily eroded, so a little bit of effort goes a long way – a conventional rock tumbler is overkill, converting beautiful stones into a dusty pile of sediment. But maybe you’ll keep any stones you encounter in their natural state, tucked away in your pocket, ready to perform a magic trick of your own.

A Passionate Pollinator

bee

A typical maypop pollination sequence in action. Note the shiny abdomen of the carpenter bee, and the oblong yellow anthers smearing pollen over the bee’s head. The round green stigmas, slightly above the anthers, will be jostled when the bee is preparing to move to another flower. Photo by the author.

Summer blockbusters at the multiplex are big and bold, but equally dramatic spectacles are happening outside as plants send up blooms to attract insect pollinators. While sunflowers and zinnias command quite a following, and anise hyssop and bee balm have their charms, the best show in town right now in central North Carolina is at the maypop—also known as the purple passionflower—hands down.

Colorful and vivid, with a curtain of tye-dyed strips surrounding a pillar of five anthers perched below three ovaries, any of the five hundred plus species of passionflower would fit right into a bouquet designed by Dr. Seuss. Some see the flowers as strangely clock-like; others view it as living metaphor full of religious symbolism. Despite its exotic appearance, however, the delights of passionflowers aren’t limited to the tropics. Five species can be found growing throughout the southeastern United States, and the maypop (Passiflora incarnata) is one of the hardiest of the lot, ranging as far north as Pennsylvania in the wild.

Unlike many native perennials, which need specialized environments in order to thrive, the maypop is not fussy about its living space. It’s aggressive and vigorous, flourishing in full sun and disturbed areas, even in years with little rainfall. It clamors up over other plants in a race to get ahead, twining tendrils and pulling no punches, to the point where it’s occasionally listed as an agricultural weed. It can grow as much as fifteen feet in a season before dying back to the ground with the frost. This drive to survive at all costs, coupled with its showy purple and white blooms and edible fruit, has made it a beloved staple of Southern gardens. And with it come the pollinators.

Eastern carpenter bees (Xylocopa virginica) look and act much like their bumblebee cousins, with a few twists: bigger, buzzier, and boasting black and shiny abdomens. Aside from the occasional misstep of burrowing into wooden structures, they rarely bother humans. Like all bees, they are important pollinators for flowers—except when they “cheat” by nipping flowers at the base to get a quick hit of nectar.

The maypop, however, has an ingenious mechanism to foil cheaters. Instead of having a curled base for nectar storage, all of the good stuff is located at center of the flower’s disk. In order to reach it, however, the bee has to brush against at least one of the five stamens—conveniently located just the right height for a carpenter bee—which smear pollen all over the bee’s head. Once the bee is finished at the first flower, it will have to rub up against the receptive stigmas of the next flower in order to drink more nectar, thus ensuring successful pollination. I’ve never seen any of them stop at just one flower! Occasionally, a tiny wasp or a Japanese beetle might slip in to steal some nectar, but the vast majority of insects I see on maypop flowers are carpenter bees, obliviously pollinating away while they gorge on nectar.

fruit

Not ripe yet…. but getting there! Photo by the author

And thus arises the other wonder of the maypop—namely, its fruit, which closely resembles its commercially grown tropical cousins in size and taste. You may think you’ve never tasted a passion fruit, but guess again—its distinctive flavor adds a kick to the popular fruit drink Hawaiian Punch. The egg-sized fruits—technically berries—are bright orange when ripe, and can be eaten out of hand. They can also be used in jams and jellies, although I’ve never met anyone who’s managed to make it that far with them.

Dinner and a show—who could ask for anything more on a hot summer day?

Southern Comfort

Magnolia_flower_Duke_campus

The Southern magnolia flower in bloom. Photo by DavetheMage. Image licensed under creative commons by wikipedia.com.

The grande dame of its family, the southern magnolia dominates the landscape. There is simply no overlooking its stately elegance, especially when it is in full bloom. Bearing flowers as wide as your face—worthy of the epithet grandiflora, “big-flowered,” indeed—a southern magnolia is no mere tree. A southern magnolia is an experience.

Let’s start with the blooms. Following a design ancient by evolutionary standards, they are similar in structure to the first flowers that appeared in the Jurassic era millions of years ago, a testament to success. Large simple petals, pearly in color and texture, fold over a bizarre-looking yellow cone-like structure at the center. Yellow stamens fall like matchsticks from the base of each cone—actually compendium of simple pistils—and collect in the folds of the petals. Once the flowers have been fertilized, the petals fall back in a brown and crinkled heap as fleshy red fruits dangle on tiny white threads from the now-green and black cone. Until that happens, though, the scent is heavenly—alternately described as lemon, citronella, or jasmine—as an enticement to its beetle pollinators.

Magnolia_grandiflora_2003

The fruit, seeds and cone in all their bizarre glory. Photo by Pmsyyz. Image licensed under creative commons by wikipedia.com.

Meanwhile, the rest of the tree is equally impressive. The leaves are stiff and papery, green and waxy above and fuzzy brown velvet beneath. Typically boasting a single trunk, each tree stretches into a classic pyramid, broad at the base and narrowing to a single point at its apex. Given enough time and space to reach mature size, each magnolia tree becomes its own island, its lower branches hovering just above the ground, the evergreen leaves above form a dense canopy under which nothing else can grow. Blocking out the sounds and view of the world outside, each tree becomes a miniature oasis. A grove of mature trees forms a graceful archipelago—truly a sight to behold. Even in winter, the southern magnolia bears the occasional snowfall or ice storm with grace.

With the possible exception of live oaks, no trees are more evocative of the archetypal South than the southern magnolias. Yet they are true natives only to a swathe of the southern Carolinas, Georgia, Alabama, Mississippi, and Florida. Known colloquially as “bull bay,” they join their cousin Magnolia virginica, the sweetbay, and the unrelated redbay and loblolly-bay to grace the swamps and pocosins with their presence. Left to their own devices, they would never have made it further into the uplands. Fortunately for gardeners everywhere, the southern magnolia thrives outside of its natural range, even when pushed to its limits. One such specimen can be found in Burlington, in the courtyard of Marsh Life Science building on the University of Vermont campus, where sheltered walls and a south-facing aspect create a microclimate warm enough for this southern tree to survive harsh New England winters.

Moreover, the southern magnolia is versatile in the human-dominated landscape: I have also seen it growing as a street tree in Monterey, California and lining parking lots and new developments in Cary, North Carolina. However, most of the trees used in the modern horticultural trade are dwarf cultivars that will never reach the width and stature the species is capable of. Although my heart is gladdened to see them, I cannot help feeling wistful, as if something important has also been lost.

Climbing those older, giant trees was an essential staple of my childhood. The wide, thick limbs were easy to scramble up with the ease of a squirrel, offering real height and perspective. For a time, I was removed from the cares of the world and fully immersed in the world offered by the trees. Attending college along the Chesapeake Bay in Maryland, the southern magnolias grove tucked away in a sheltered courtyard soothed my soul during times of anxiety and change. The arbiter of student discipline, the Assistant Dean, had an office directly facing those trees, so I never found the courage to climb them. Still, I valued those trees for the reminder that I was not too far, ecologically speaking, from home.

It’s May now, and the southern magnolias are blooming again in the gardens of my hometown in North Carolina. When I breathe in the scent of its blossoms, I am in my childhood again, that long golden summer where anything is possible and no height is unattainable.

The Noble Sporophyte

Moss_Gametophytes_Sporophytes

Moss sporophytes emerging from a clump of moss. By Bob Blaylock. Image licensed under creative commons by Wikipedia.

Moss sporophytes are tiny, slender structures that pop out of moss in droves. Their beauty, diversity, fun-factor, and cute little caps continually amaze me. Like a big buzz cut, they tickle my hand as I graze them. If I am lucky, they are ripe and release their spores in a small flurry, sending a miniature cloud of dust eight inches forwards. The spores melt away into the air, quickly invisible to the naked eye. Usually, I brush the clump again and again, and the sporophytes repeat the trick until the caps are emptied of their spore dust. Eventually, some of the spores will germinate to grow new moss plants.

Once the caps pop off the sporophytes, you can tell they are ripe or almost ripe. By Hermann Schachner. Image licensed under creative commons by Wikipedia.

Over the five years that I earned my living teaching outdoor programs, I taught several hundred people about sporophytes. I would have the group help me find a promising patch of moss, and with reverent enthusiasm, I would show my students the petite sporophytes. Then, I would share the three reasons that sporophytes had captured my heart to become one of my favorite things in the forest.

First of all, I didn’t know that they existed until I was in my 20s, and once I knew to look for them, I saw them almost everywhere there was moss. This was an astounding discovery, and one of the most poignant, eye-opening experiences of my college years. I had been oblivious to the ubiquitous and entertaining sporophytes all around me, and it was amazing to have my eyes opened just by learning to look for them.

An example of moss sporophyte diversity and elegance. By Vaelta. Image licensed under creative commons by Wikipedia.

An example of moss sporophyte diversity and elegance. By Vaelta. Image licensed under creative commons by Wikipedia.

Next, I would demonstrate the gorgeous diversity of the sporophytes. The stalks are often iridescent, and many of them exhibit a gradient of hues. For example, some range from gold to deep, metallic purple.The spores are also often brightly colored, sometimes in surprising ways. I have dissected sporophytes that revealed bright orange, white, or dayglow green spores. And the stalks are always fine and flexible, which means that they “boing” in a tactilely-satisfying way.

Finally, I would show the participants, adult or child, how fun sporophytes are by running my hand through the tuft. If I judged the clump well, and was lucky, a cloud of spores would gently whiff from the cluster of stalks. Everyone would take turns helping the spores fly free. Invariably, some excited participants would spend the rest of the program looking for other clusters of ripe moss sporophytes.

A close-up of a sporophyte capsule. By Bernard DuPont from France. Image licensed under creative commons by Wikipedia.

A close-up of a sporophyte capsule. By Bernard DuPont from France. Image licensed under creative commons by Wikipedia.

Moss sporophytes illustrate some of the most important reasons that humans need the natural world. They invoke wonder, are beautiful and fun, boggle minds with their diversity and scale, and inspire curiosity. For those who have never really noticed them, they encourage humility by reminding us how little we see and understand each day, even when it’s right in front of us. Moss sporophytes provide an opportunity for people to interact with nature in a hands-on way, and in doing so, people help the little plants send their spores into the wind. The experience is tactile, guilt-free, and doesn’t require any special equipment.

As the spring rains feed the forests, fields, and yards around you, keep an eye on your local moss patches. The mossy marvel of a ripe sporophyte might be waiting at your feet.

The moss life cycle. The green moss is the gametophyte, which gives rise to sperm and eggs, which combine to grow a sporophyte from the tip of the gametophyte. The spores germinate to grow more gametophytes (the green moss). By Htpaul. Image licensed under creative commons by Wikipedia.

The moss life cycle. The green moss is the gametophyte, which gives rise to sperm and eggs, which combine to grow a sporophyte from the tip of the gametophyte. The spores germinate to grow more gametophytes (the green moss). By Htpaul. Image licensed under creative commons by Wikipedia.

Secrets of The Vault

Sean and I are in The Vault. We’ve been here for a while—hours now. It’s less grandiose than it sounds, really just a back room in the Charlotte Town Hall, but it gives me the same feeling I get from the New York Public Library or a fancy art museum. Tread lightly, the walls are saying. Look closely. We have secrets for you.

Inside The Vault. Photo by Samantha Ford.

Inside The Vault. Photo by Samantha Ford.

What’s amazing is that the secrets of The Vault are not really secret at all. Every document in the room is in the public record, even the original map of the Town of Charlotte, hand-drawn in 1763. The massive red books of land records, the card catalogues of births and deaths—these pages of history are not preserved behind glass; we are perfectly free to look at them. I can reach out a hand, every now and then, to gently trace this two-hundred-and-fifty-year-old calligraphy.

We’re here to research the UVM Natural Area at Pease Mountain, a prominent hill directly west of the Charlotte Town Hall and just north of Mount Philo along the Champlain thrust fault. This semester, our cohort is performing a Landscape Inventory and Assessment of the area. We’ve spent several weekends strolling along the mountain’s broken quartzite ledges, and we’re starting to get a sense of the property’s natural resources. The soil is thin but rich, patterned here and there with the frostbitten remains of last year’s hepatica leaves. The trees are not the usual beech-birch-maple assortment we expected, but a variety of species used to warmer, drier climates: peeling trunks of shagbark hickory, gnarled red oaks, bitternut hickories with their sulfur-yellow buds. We’ve noticed hints of other mysteries: a road cut here, an old stone foundation there. UVM acquired the property in 1949; Sean and I want to know who has owned Pease Mountain–and what it’s been used for–as far back as the town’s records go.

20160329_105958

First subdivision of the town of Charlotte.

We start by looking in the Index, a twenty-pound tome containing a list of every land transaction undertaken in Charlotte until the book ran out of pages around 1960. Thankfully the Index is alphabetized and we quickly find the record we need: “Jeanette S. Pease Phelps and George J. Holden to University of Vermont and State Agricultural College.”

I’m immediately absorbed in the web of archaic legalese that follows: “Now, know ye, That pursuant to the license and authority aforesaid, and not otherwise…We do by these Presents, grant, bargain, sell, convey and confirm unto the said University of Vermont…the following described land…Being Pease Mountain, so-called, in the town of Charlotte.” The deed was written barely more than half a century ago, but it reads like something from the middle ages. The solemn tone is compelling. I can picture the occasion, the buyers and sellers grouped around a table, poised to sign below the words, “In witness whereof, we hereunto set our hands and seals…”

Original charter of the town of Williston. Photo by Samantha Ford.

Original charter of the town of Williston. Photo by Samantha Ford.

We follow the trail further and further back, tracing property descriptions bounded by increasingly vague terms: “…to the N.E. corner of said lot to a maple stump with a cedar stake in said stump. Thence southerly on the west line of said owned by Everett Rich to a cedar stake & stones in the S.E. corner. Thence westerly on the north line…” The record books get thinner as we travel back in time, the pages more brittle, the writing fainter. Eventually we find ourselves scrutinizing a gridded map: the second subdivision of the town.

Accompanying the map with its numbered parcels, we find a list of the original owners of those parcels. Lot number 1, which at the time encompassed most of Pease Mountain, is ascribed to “Glebe for the Church.” We puzzle over this. Who was Glebe? We haven’t heard any mention of him in more recent deeds. Was he a minister?

Glebe for the Church. It sounds like a momentous designation. We finally think to Google the strange phrase, and we discover the ancient tradition of glebe land. It’s not a person after all, but a kind of conservation easement. When Vermont’s first towns were established, certain plots of land were set aside to remain undeveloped. These lands were leased to farmers or timber harvesters in exchange for a rental fee, which paid for municipal costs or, in this case, the upkeep of the parish. For hundreds of years, Pease Mountain was preserved by this tradition.

Mysterious stone structure found on Pease Mountain.

One of several mysterious stone structures found on Pease Mountain.

As we leave the Town Hall, Sean and I glance up at Pease. Our journey through the handwritten history of Charlotte has given us a deeper sense of this place. As we’ve walked there with our cohort we’ve mapped natural communities and forest stands, discovered vernal pools and views over the lake. But walking and looking can only take us so far back. Beyond the oaks and hickories, the purple cliffs, the porcupine and bobcat dens, there is another Pease Mountain story. It’s no longer legible in the landscape. But luckily for us, it’s all written down in the record books.

Julia Runcie is a first-year student in the Ecological Planning program.

Magic Waters

IMGP6653

Ice on the LaPlatte River in February.

“There is magic in running water, for after I have thought its life history all out there is still much unexplained.”  

These are the words of my great-grandfather, from a book he wrote ninety-three years ago called Man’s Spiritual Contact with the Landscape.  I never met him, as he died long before I was born, but from his words I can tell that we have much in common.  

Every morning I walk beside the LaPlatte River in Shelburne and contemplate the life history of its waters.  One morning this February a frozen flood made the magic in those waters visible.  Rain on snow during a warm snap caused the level of the river to rise quickly during the night.  By morning the river was several feet above its normal water level.  The water fell gradually, but the temperature plunged quickly, and during the next night a thin layer of ice formed on the surface of the waters, marking the height of the water at the coldest part of the night.  It was as though someone had pressed a pause button on the flood, and an eighth-inch-thick sheet of ice clung to trees and sticks, hovering six inches above the ground.

Frozen floodwaters of the LaPlatte River.

The frozen floodwaters of the LaPlatte River this past February.

My dog and I crashed through this frozen landscape the next morning and reveled in the sparkling beauty of a world draped in a silver cloak of ice.  Now, in April, the flood plain no longer sparkles, exactly – it wears the drab browns and greys of early spring.  Bits of green poke through here and there, but for the most part every surface is still coated with the fine layer of silt left behind by receding flood waters.  I revel in this landscape, too, because a functioning floodplain ecosystem is a beautiful thing.

That thin layer of silt represents a fresh collection of nutrient-rich sediment for the hungry plants and trees of the flood plain.  The plants of the flood plain are specially adapted to live in this water- and nutrient-rich environment, and they often depend on annual flooding not just for nutrients, but also to spread their seeds and carry away any less well-adapted competition.  Different plants adapt to different environments of the flood plain, some preferring the naturally formed berms just beyond the banks of the river, while others are more suited to the slow-to-drain boggy back-swamps.  These, too, depend on flooding for their formation.  

Marks created on a floated chunk of ice when it was carried beneath a tree overhanging the river.

Marks created on a floating chunk of ice when it was carried beneath a tree overhanging the river.

Roiling and fast moving flood waters contain a lot of energy, enough energy to carry much more than just silt.  Sand, stones, and larger sediment often get swept up and transported long distances in a rushing spring river.  When a river leaves its banks it immediately loses much of its energy.  The water slows and spreads out across the floodplain, dropping first the heavy sediment, such as sands and gravel, and then the finer silts and organic materials further out.  This sorting by size is what results in the gentle berms immediately past the banks of the river, and the silt that travels further is smaller, so it packs more tightly together when it reaches the ground, creating the slowly draining back-swamps beyond the berms.  

A wood frog found in April along the floodplain of the LaPlatte.

A wood frog found in April along the floodplain of the LaPlatte.

Right now, in the pools of flood and melt water filling the back-swamps, peepers and wood frogs sing their spring chorus of lust in hopes of attracting a mate.  These swamps and pools dry completely late in the year, and so sustain fewer aquatic predators that might eat the breeding amphibians or their eggs, so these pools are important for their survival.  And their survival should be important to us, because amphibians are the main predators of mosquito larvae, who also favor the standing waters of back-swamps.  Another frequent inhabitant of back-swamps, eastern newts, are capable of eating over 300 mosquito larvae in one day.  

Many mammals also rely on the floodplain forests for their survival.  Chipmunks and minks prey on the amphibians, and then in turn feed foxes, coyotes, and bobcats. Beavers are the architects of the channel, building dams and lodges that move the flow, eroding this bank or that, building sand bars with the changing flow path.  Birds ranging from tiny wrens and finches all the way up to red-tailed hawks, ravens, and turkey vultures also feed on the life that surrounds the river.  

My grandfather’s book included a chapter for each month of the year, but he began with the running waters of April.  As I walk beside the river each morning it is not so difficult to see why, for the river and its tributaries are like veins through the landscape: they carry life.  Life that wakes and grows and flies and sings in April.  So next time you find yourself beside a river in April, look beyond the dull grey patina of silt and enjoy the magic that is running water.  

Silver maple flowers developing into seeds beside the LaPlatte river. Silver maple is a common floodplain tree species.

Silver maple flowers developing into seeds beside the LaPlatte River. Silver maple is a common floodplain tree species.

Shelby Perry is a second year student in the Field Naturalist program.  Her great-grandfather, Stephen F. Hamblin, was the author of the book Man’s Spiritual Contact with the Landscape and co-author of Handbook of Wild Flower Cultivation.  He was a professor of horticulture and landscape architecture at Harvard University and the Rhode Island School of Design and founded the Lexington Botanic Garden.  

The Colors of Faoilleach

We’re in the middle of faoilleach – the Gaelic season comprising the last three weeks of winter and first three weeks of spring. Before you groan over the absence of green, and wish yourself in the lime lighting of a June forest, take time to notice and celebrate other colors that hint to the great awakenings of spring.

Magenta

IMG_0252

Beneath their pearly coats, the emerging catkins (spikes of single-sex, drooping, petal-less flowers) of the pussy willow glow magenta. Their presence is a cherished ritual of the seasons, Sigurd Olson writes, “In a world seething with mistrust, suspicion and clashing ideologies, pussy willows may be vital to the welfare of man and his serenity”.

Burgundy

IMG_0205

Look for the deep burgundy color in the male catkins of speckled alder as their flowers begin to develop. As the male catkins begin to expand, the color brightens. Eventually the burgundy shifts toward yellow as the pollen develops. Note the smaller scarlet female catkins nubs above (these will transform into the cone-like structures that persist throughout the winter).

Ivory

IMG_0219

Ivory hairs gleam in newly opened shadbush buds. They help insulate the flowers from spring cold snaps. Soon clusters of 5-petaled propeller-like white flowers will emerge. The flowering time is an important seasonal clock – marking when shad swim upstream to spawn (hence the name) and the period when colonists who died over the winter were buried, hence another name—serviceberry.

Auburn

IMG_0249

Look for the bursting auburn flowers of silver maples lining streets and rivers, especially noticeable against a bluebird sky. This fast-growing and short-lived species carries its male and female flowers separately, although sometimes on the same tree.

Silver

IMG_0244

Catkin tips shine silver as they emerge from flower buds of trembling aspen. Male and female catkins are found on separate trees. Despite millions of fluffy seeds produced, strict germinating constraints limit the success of these seeds. Thus aspens rely on root sprouting clones to earn their title of most widely distributed tree in North America.

Crimson

IMG_0225

Spring sun vividly reddens Red Osier Dogwood in early spring. The brilliance of color, generated by anthocyanin pigments in the bark, is determined by light intensity. In shaded areas, its stems and branches still grow, yet in greener tones.

If you’re impatient for the mints and emeralds, limes and jades, you can force the color. Simply place a twig in a jar with water near a window and be comforted by the return of green that will reveal itself outside in time.

IMG_9316

Ellen Gawarkiewicz is a first-year graduate student in the Field Naturalist Program.

For the Love of Bees

Hive of Activity. Photo credit: Gabe Andrews

Oh How She Glows

In Yellow, She Glows. Photo credit: Gabe Andrews

We want cheap groceries, strawberries in March, and impeccable lawns. We strive for dominion over the web of life, especially our domesticated crops and the pests that threaten them. Bees get caught in the middle of it all. Habitat homogenization and the increased use of pesticides –particularly neonicotinoids – have contributed to the decline of our pollinators, and bees have been hit the hardest. There are practical implications for this loss. We could talk about the $15 billion that honeybees contribute to the U.S. crop economy, or about the food on our fork (of which 1 in 3 bites requires insect pollination) [1]. Undoubtedly, California’s profitable almond industry – a crop entirely reliant on honeybee pollination – would crumble overnight with the complete loss of honeybees. But with the disappearance of these proficient pollinators we risk much more than a painful sting to our economy; we jeopardize our humanity.

Bees offer us creative inspiration. The hive and its workers give us metaphors persistent in everyday language. The brilliant construction of hexagonal honeycomb encourages architectural marvels that promote efficient design (circles, pentagons and octagons leave wasted space; triangles and squares –with their greater relative circumference –lack the storage capacity of hexagons) [3]. The cooperative society inside a hive emboldens us to become better humans. The careful collection of nectar reminds us to slow down and taste the sweetness of a good day. As worker bees gradually transform nectar to honey, they teach us fortitude and patience. Though these lessons are in shorter supply with a decline in apian educators, our individual and collective actions can keep them from disappearing altogether.

Humble Bumble

The Humble Bumble. Photo credit: Gabe Andrews

Many already stand –smoker in hand – ready to save the bees. Hobby beekeeping has gathered momentum, pollinator-friendly gardens are on the rise, and even the federal government has perked its ears. Organic agriculture has grown by 250% since 2002, a sign that consumer decisions have driven the market away from pesticide reliance [4]. All of this comes as welcome news to honeybees, but their step-sisters haven’t received nearly the hype. With all the attention placed on domesticated bees, wild bees continue their downward spiral. In the Northeast alone, close to 25% of bumblebee species (Bombus spp.) have disappeared or declined throughout their range [5]. Hopefully we can target our efforts more broadly to protect all genera of bees.

We know that habitat loss severely influences pollinator decline; our porches and backyards cover once-wild ground, but let’s keep our vision on the present for a minute. Landscaping with native plants is a great way to attract and support your local bees (not to mention reduce your mowing commitment). When the time comes for pruning, the hollow twigs of some goldenrods (Solidago spp.) and coneflowers (Echinacea spp.) make great homes for orchard (Osmia spp.) and small carpenter (Ceratina spp.) bees. Wooden boxes filled with holes serve a similar purpose for larger bees.  Don’t forget to leave pockets of bare soil for ground-nesting bees (Colletes spp.). Minimizing pesticide use could help keep bees from dying, but habitat and food will give bees a chance to live.

Watching and keeping bees is more art than science. With this mindful craft comes patience, awareness, and imagination, but you don’t need a honeybee hive to enjoy such an experience. Yes, bees are essential to the health of our economy, our planet, and the diversity of our dinner plate. A world without almonds and apples would be a shame. But to live without the unwavering brilliance of such humble insects would be a tragedy.

Gabe Andrews is a first-year graduate student in the Field Naturalist Program at UVM. 

[1] Hopwood, J. et al. (2012). Are neonicotinoids killing bees? A review of research into the effects of neonicotinoid insecticides on bees, with recommendations for actionThe Xerces Society for Invertebrate Conservation.

[2] Williams, G.R. et al., 2015. Neonicotinoid pesticides severely affect honey bee queens. Scientific Reports, 5, p.14621. Available at: http://dx.doi.org/10.1038/srep14621.

[3] Mathis, C.R. and Tarpy, D.R. (2007). 70 Million years of building thermal envelope experience: building science lessons from the honey bee. Available at: https://www.cals.ncsu.edu

[4] USDA Office of Communications bulletin April 15, 2015

[5] Vermont Center for Ecostudies: Bumble Bees

 

Skip to toolbar