Postharvest Storage

Webinar

October 15, 2014

Chris Callahan
UVM Extension Ag Engineering
chris.callahan@uvm.edu 802 773 3349
http://blog.uvm.edu/cwcallah

UVM Extension helps individuals and communities put research-based knowledge to work. Issued in furtherance of Cooperative Extension work, Acts of May 8 and June 30, 1914, in cooperation with the United States Department of Agriculture. University of Vermont Extension, Burlington, Vermont. University of Vermont Extension, and U.S. Department of Agriculture, cooperating, offer education and employment to everyone without regard to race, color, national origin, gender, religion, age, disability, political beliefs, sexual orientation, and marital or familial status.
Outline

• Postharvest Basics
• 4 Crop Case Studies
• Systems & Monitoring
If you needed to store these vegetables for 6 months…

…What would you worry about? What specific things should you pay attention to?
What is common about these vegetables and what is different?
You Grew It... Now what?

- By the time you harvest, most costs are sunk.
- Lasting quality depends on good storage.
- Profitability is directly related to waste.
- Market and season expansion
<table>
<thead>
<tr>
<th>Harvest</th>
<th>Postharvest Processing</th>
<th>Storage</th>
<th>Poststorage Processing</th>
<th>Distribution</th>
<th>Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variety selection</td>
<td>Transport</td>
<td>Temperature control</td>
<td>Rinsing / washing</td>
<td>Transport</td>
<td>Appearance</td>
</tr>
<tr>
<td>Preharvest pathology</td>
<td>Receiving Quality Assurance</td>
<td>Humidity control</td>
<td>Packing</td>
<td>Handling</td>
<td>Flavor</td>
</tr>
<tr>
<td>Cultivation for harvest and storage</td>
<td>Precooling</td>
<td>PACKAGING</td>
<td>Trimming</td>
<td>Crop separation / combination</td>
<td>Form</td>
</tr>
<tr>
<td>Field food safety</td>
<td>Washing / rinsing</td>
<td>Trimming</td>
<td>Sorting / culling</td>
<td>Ripening</td>
<td>Texture</td>
</tr>
<tr>
<td>Harvest practices</td>
<td>Trimming</td>
<td>Value addition / conversion</td>
<td>Handling</td>
<td>Decay in distribution</td>
<td>Color</td>
</tr>
<tr>
<td>Field food safety</td>
<td>Sorting and culling</td>
<td>Controlled and modified atmosphere</td>
<td>Value addition / conversion</td>
<td>Processing Food Safety</td>
<td>Nutrition</td>
</tr>
<tr>
<td>Field packing</td>
<td>Value addition / conversion</td>
<td>Ethylene controls</td>
<td>Crop and variety storage performance (decay & pathology)</td>
<td>Tracking / Tracing</td>
<td>Value</td>
</tr>
<tr>
<td>Field quality assurance</td>
<td>Handling</td>
<td>Handling</td>
<td>Crop separation / combination</td>
<td>Tracking / Tracing</td>
<td>Net energy per calorie</td>
</tr>
<tr>
<td>Field dwell</td>
<td>Packing</td>
<td>Processing Food Safety</td>
<td>Worker safety and ergonomics</td>
<td>Tracking / Tracing</td>
<td>Food Safety</td>
</tr>
<tr>
<td>Maturity at harvest</td>
<td>Ripening</td>
<td>Storage Food Safety</td>
<td>Worker safety and ergonomics</td>
<td>Tracing / tracking & Monitoring</td>
<td>Food Security</td>
</tr>
<tr>
<td>Tracking / Tracing</td>
<td>Processing food safety</td>
<td>Ripening</td>
<td>Ripening</td>
<td>Tracking / Tracing</td>
<td></td>
</tr>
<tr>
<td>Worker safety and ergonomics</td>
<td>Tracking / Tracing</td>
<td>Storage Food Safety</td>
<td>Tracking / Tracing</td>
<td>Tracing / tracking & Monitoring</td>
<td></td>
</tr>
</tbody>
</table>

C. Callahan, UVM Extension. http://blog.uvm.edu/cwcallah
Storage Characteristics of Food

- Respiration & Metabolism
- Temperature
- Humidity
- Ethylene
- Food Safety
- Pathology
Postharvest Basics

- Stored crops are still alive.
- Metabolism continues after harvest (respiration).
- ...and it is highly dependent on temperature.
What happens in storage?

• Chilling / Freeze Injury
 – Tissue damage
 – Variable over body of plant
 – Min temp not same as freezing temp

• Desiccation / Drying Damage
 – Cool or cold air
 – Heat from respiration
 – Moisture (H2O) available at surface of produce
 – Need humidity (H2O) in air, “RH” or relative humidity
What happens in storage?

- Ethylene
 - C2H4
 - Produced in stored produce (at various rates)
 - plant hormone
 - physiologically active at very low concentrations
 - (0.1 to 10 ppm)
 - Stored produce is variably sensitive to Ethylene
 - Bittering effect
 - Premature decay
Storage is a hotel.
Not a hospital.
And each crop is different

- Recommended storage conditions
 - Temperature
 - Relative humidity
- Ethylene production rate
- Ethylene sensitivity
- Chilling/Freezing Injury
- Variety differences

http://www.ba.ars.usda.gov/hb66
Storage Crops – Case Studies

<table>
<thead>
<tr>
<th>Crop</th>
<th>Units</th>
<th>Carrot</th>
<th>Onion</th>
<th>Potato</th>
<th>Cabbage</th>
<th>Squash</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage Density</td>
<td>lb/ft³</td>
<td>22</td>
<td>20</td>
<td>42</td>
<td>17</td>
<td>35</td>
</tr>
<tr>
<td>Temp</td>
<td>ºF</td>
<td>32–34</td>
<td>32</td>
<td>36-40</td>
<td>32</td>
<td>50</td>
</tr>
<tr>
<td>RH</td>
<td>%</td>
<td>98 – 100</td>
<td>65 – 70</td>
<td>99 – 100</td>
<td>98 – 100</td>
<td>50-70</td>
</tr>
<tr>
<td>Duration</td>
<td>Months</td>
<td>7 – 9</td>
<td>6 – 9</td>
<td>Up to 12</td>
<td>3 – 6</td>
<td>1-3</td>
</tr>
<tr>
<td>Resp. rate at temp</td>
<td>mg CO₂ kg · hr</td>
<td>10-20</td>
<td>3 (cured)</td>
<td>6 – 18 (cured)</td>
<td>4 – 6</td>
<td>100</td>
</tr>
<tr>
<td>BTU ton-hr</td>
<td></td>
<td>138</td>
<td>28</td>
<td>110</td>
<td>46</td>
<td>917</td>
</tr>
<tr>
<td>Ethylene Prod. Rate</td>
<td>uL kg-hr</td>
<td>< 0.1</td>
<td>< 0.1</td>
<td>< 0.1</td>
<td>< 0.1</td>
<td>Trace</td>
</tr>
<tr>
<td>Ethylene Sensitivity</td>
<td>uL L</td>
<td>High ~ 0.2</td>
<td>Low > 1500-2000</td>
<td>Low</td>
<td>High ~ 1.0</td>
<td>Low</td>
</tr>
</tbody>
</table>
Zoned Storage

- Zoned by temperature and relative humidity
- Also consider ethylene production and sensitivity
- Low cost – perforated bags, vapor barrier walls, greenhouse poly, moist burlap
- Higher cost – dedicated structures
- Could also be useful to have a zone dedicated to precooling / removal of field heat.
Removing Heat

- Root Cellar
 - Essentially a cool sink with high humidity
- Air Exchange
 - Exchanging cool outside air with warm inside air using fans and thermostat controls
- Cooler
 - Mechanical refrigeration to “pump” heat out

Adding Heat

- For higher temperature crops
 - Electric, propane, biomass/pellet heaters
“Cold” Storage or “Warm” Storage?
Elliston Root Cellar, Newfoundland - 1610
Structure and Materials

- Sound
- Durable
- Moisture tolerance
- Reusable?
- Portable?
Finish/Inside Materials

“Smooth and cleanable”

- Galvalum roofing
- Lauan (1/8” underlayment, top coat with paint)
- Fiber reinforced plastic (FRP, “dairy board”)
Cost Summary of Finish Materials

<table>
<thead>
<tr>
<th>Finish Material Options</th>
<th>$/sqft</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRP (Smooth) on 3/8 CDX Plywood</td>
<td>2.48</td>
</tr>
<tr>
<td>FRP (Textured) on 3/8 CDX Plywood</td>
<td>2.62</td>
</tr>
<tr>
<td>1/4" Lauan on 3/8 CDX Ply, Painted</td>
<td>1.60</td>
</tr>
<tr>
<td>Araucoply/Selex 3/8", Painted</td>
<td>1.35</td>
</tr>
</tbody>
</table>
Structure and Materials

Practices to avoid

Direct soil contact

Uncoated plywood / chipboard / sheetrock

Uncoated sprayfoam
Doors and Sealing

• Check door seals and latches - adjustable
Structure and Materials

• Sealing –
 – daylight test
 – (or dog/cat test).
Rodent & Pest Control

• New construction vs. Retrofit
• Bait & traps
 – OMRI approved D3 rodenticide
 – Must have strict schedule for checking traps!
• Tight envelope excludes pests
 – Wire mesh / hardware cloth
• Some storage bins help exclude rodents
• Cement curb
Refrigeration

Outside the Cooler

Inside the Cooler
Refrigeration

Evaporator Unit

Compressor / Condenser Unit
Evaporator Options

- Standard
- Low Velocity (High Humidity)
- Plates
Humidification

• Generally required for root veg storage
Humidification

Dayton – Humidifier Control 20-90%, $60

Standard room humidifier, refills are manual. $30
Humidification

Trion Duct Humidifier
$285

Atomizing type
Auto-fill

6 gal per day

www.qasupplies.com
DIY Autofill Bucket Humidifier
5 gal per day at 33 F room temp
Evaporative type
Open source design
Parts ~$155

www.FarmHack.net

http://farmhack.net/tools/auto-fill-high-output-temperature-controlled-humidifier#wiki
CoolBots™

- Adapt an air conditioner for use as a refrigeration system.
- Air conditioners are basically “packaged” refrigeration systems run at higher temperature.
- Build a “good box” first.
CoolBots™

• Pro’s
 – Low initial cost
 – Easy to retrofit into existing spaces with basic construction
 – Potential efficiency benefit

• Con’s
 – Slow to “pull down” temperature
 – Slow to recover from rises in temp
 – Can not freeze, only cools down to 35 ºF

www.storeitcold.com – Has loads of info and is very clear.
CoolBot vs. Conventional

- 2009 NYSERDA Study
- 8’x10’ storage room - Albany, NY conditions
- Cooled to 35 F
 - with evap fan controls
 - Conventional is 74 kWhr/yr more efficient ($10/yr)
 - without evap fan controls
 - CoolBot is 230 kWhr/yr more efficient ($30/yr)
- Coolbot cost $750 (net of cold room)
- Conventional cost $4,400 (net of cold room)
Controls - Thermostats

• Control a load based on temperature

“remote bulb” allows measurement inside, adjustment outside of room.
Adding Humidity
• Crops will add some humidity as they respire
• Moist slabs
• Moist burlap / cloth blankets
• Should be cleaned regularly
• Foggers / Nozzles

Removing Humidity
• Outside air exchange can be very effective
 – Small fan with ducting
Humidity Sensors

- Humidity: 10 to 99% RH
- Temperature: 14 to 140°F (-10 to 60°C)
- Accuracy: ±5%RH; ±1.8°F, ±1°C
Sling Psychrometers

QA Supplies
Bacharach Heavy Duty Sling Psychrometer - $155
www.qasupplies.com

Ben Meadows
Weksler Sling Psychrometer - $68
www.benmeadows.com
Containers

• Storage bins/pallet sizing
• Consider: Wood vs. Plastic, Maneuverability, Stackability, Airflow & circulation
Measure and Monitor

• “The measured variable improves.”

• Temperature **AND** Relative Humidity

• Don’t assume you have the conditions you want. **Measure**.

• **Low tech** – wall sensors, daily checks, log book

• **High tech** – remote monitoring, email alerts

• Calibration and certification
USB Data Loggers

DATA-Q www.dataq.com

EL-USB-2+ USB Data Logger
Measures ambient temperature and humidity
Higher accuracy than EL-USB-2
Automatically calculates dew point
-35 to +80 °C (-31 to +176 °F) temp measurement range
±0.3 °C (±0.6 °F) overall temp accuracy
0-100% RH measurement range
±2.0% overall RH accuracy (20-80%RH)
2 User-programmable temp alarm thresholds
2 User-programmable RH alarm thresholds

5 minute readings = 56 days storage
1 minute readings = 11 days storage
Download data to computer

$125 (RH +/-2%)
$99 (RH +/-3%)
$82 (RH +/-3%)
Apitronics

Base (Hive): $111
Sensors (Bees): $205-240

All wireless

www.apitronics.com
Scouting

- Daily checks for spoilage, sprouting
- Have different people perform the task
- When pulling stored crops, check other bins
- Check for spoilage, sprouting
- Use all five senses
- “Scout” the mechanicals also

Rhizopus Soft Rot on Sweet Potatoes

Potato Affected by Fusarium Dry Rot

Potato Affected by Soft Rot
Cooler Audit

• Envelope (“The Box”)
 – All doors close tightly
 – All seals are sealing
 – Signs of degradation
 – Signs of mold
 – Air circulation inside

• Mechanicals (“The Chiller”)
 – Noise is energy
 – Condenser coil is clean and clear
 – Annual refrigeration tuning
Technical References

- UVM Extension Ag Engineering Blog
 - http://blog.uvm.edu/cwcallah/
- USDA HB 66
- NE Vegetable Management Guide
 - http://nevegetable.org/
- UC Davis Post Harvest Website
 - http://postharvest.ucdavis.edu
- Psychrometric Charts and Calculators
Remote Data Monitoring – 1st Install at Pete’s Greens

Pete: December 22nd, 2012 by Chris Callahan

As an engineer, I love data. I turn out farmers do also. At least, Pete Johnson and Isaac Jacobs at Pete’s Greens in Craftsbury, VT do. “Is it working yet?” Isaac asks as I put the finishing touches on the remote data monitoring system we have been installing in the four zone drive-in cooler. Just about ... I think. I say with trepidation. Isaac has been up and down in a aircraft 4 times since installing and removing a sensor that was being difficult. And he’s been wrestling with a data station to make it communicate over the wireless network, so that we can actually see the data being collected by the new remote monitoring system.

Chris Callahan
Rutland Office / chris.callahan@uvm.edu / 802-773-3349
http://www.uvm.edu/extension/agriculture/engineering/
http://blog.uvm.edu/cwcallah/