MANURE TRAINING FOR APPLICATORS AND FARMERS

Preparing for the Upcoming Season

By Nate Severy, Agronomy Outreach Professional

This winter we have been very busy putting together workshops and meetings focused on new manure spreading rules and how farmers and custom applicators can make them work on their farms. Manure or other “agricultural wastes” cannot be spread within 25 feet of a stream and 10 feet of a ditch. There are also new restrictions when spreading in floodplains, training requirements, and recordkeeping requirements. Everyone under the certified small, medium or large farm definition must spread manure according to a Nutrient Management Plan (NMP), and all farms must apply manure based on agronomic rates.

We received a grant last fall from the Vt. Agency of Agriculture, Food and Markets (VAAFM) to develop an educational and certification program for custom manure applicators in coordination with the Northwest Crop and Soil Team. This program will be very similar to the Pesticide Applicator Program: applicators will have to take and pass an exam, recertify yearly, and accumulate 8 hours of professional development over 5 years to maintain the certification. The first exam will take place next winter, most likely before Christmas.

For this upcoming cropping season, even though custom applicators will not have their applicator certification, these businesses will be expected to follow all of the RAPs pertaining to spreading manure, including keeping application records. To help everyone learn about the RAPs and what records need to be kept, we helped organize 3 custom manure applicator workshops and 5 farmer and custom applicator employee workshops throughout Vermont. At these events, attendees learned about the new rules and what is expected from them. These workshops also provided a forum where people were able to ask questions and engage in open dialogue with VAAFM staff. At each meeting there were good conversations that generated important questions and it is great to hear respectful conversations. Even when people do not agree they can still have a good discussion. We are here to help applicators sort out their questions about the RAPs and will continue to keep the dialogue going.

Going into the 2017 cropping season, I believe that recordkeeping is going be a big obstacle for many people. Good recordkeeping takes extra time, patience, and dedication, even on a small farm. If someone is not prepared, recordkeeping could be challenging for a custom applicator that spreads manure on thousands or even tens of thousands of acres on many different farms. At our meetings, we stressed that the key to good recordkeeping is to seamlessly integrate it into your business. Some are already doing this through technologies like UVM’s goCrop™ or flow meters where fieldby-field data is automatically recorded and downloaded into a computer. Other people have put recordkeeping logs on the back of employee timesheets and require that the employee fill out the log in order to be paid. For custom applicators who need help with recordkeeping, UVM Extension has developed a recordkeeping book (copies available at our office). Each page has a carbon copy so at the end of the day the applicator can fill out the page, tear off the top and give it to the farmer for his/her records, and then tear off the carbon copy and put it in a file at home. All of these systems are acceptable, but it is important to use the system that will work best for you, and will help strengthen your business going into the future. Even though there is an initial inertia required to make record keeping successful, the hope is that it can also pay off for the farmer by documenting and improving on agronomic practices.

If you have questions about manure application or would like more information or materials on record keeping, contact our office. If you do not have an NMP and need to obtain one, contact your local conservation district or NRCS office for funding possibilities.

GRAZING CHARTS: AN ADAPTABLE RECORDKEEPING TOOL

By Cheryl Cesario, Grazing Outreach Specialist

Rotations are tracked with the grazing chart at Elysian Fields in Shoreham, Vermont.

There is a saying, “You can’t manage what you don’t measure,” and this holds true for pasture as well as crops. There are many ways to monitor and keep records of pasture yields and grazing activity. Personally, I am a fan of whatever recordkeeping system works for the individual farmer, as it has to be efficient, straightforward and provide useful information to be worthwhile.

One tool I have seen used with success is the Holistic Management Grazing Planning Chart. This tool was initially developed by Holistic Management International as a part of their overall decision making framework for farm planning. Troy Bishopp, of the Madison
County Soil and Water Conservation District in central N.Y., was able to bring the chart to the masses through a Northeast SARE grant, with the help of a network of service providers who then reached out to individual farmers. In 2013, I began distributing these charts so farmers who
were interested could try them out and evaluate their usefulness.

On the surface, the chart is just a large sheet of paper with a lot of rows and columns that form a grid. This grid is really a “year-at-a-glance” calendar that can be a powerful planning and recordkeeping tool. With a simple daily activity of filling in a box that corresponds to the day and
the field or paddock where the animals have moved, a pattern forms providing a visual record of the entire season laid out at once. With this chart, there is no flipping pages back and forth in a calendar to figure out what animals were where and when. I personally like being able to look at a chart and see how many days since I last grazed a given area, and it helps me readjust my plan. At the end of the season, I find it informative (or in the case of last summer, depressing) to see how many times I was able to graze a given field. For experienced grazers, try planning a month ahead by filling in the chart in pencil and then have fun seeing how close you were.

This will be the fifth year distributing grazing charts and I am seeing farmers track all kinds of interesting data including daily temperature and rainfall, periods of hay feeding and/or confinement, applications of chicken manure, bull introduction and frost dates. Organic farmers find these records keep their annual organic inspector happy, and they
are acceptable records for NRCS “prescribed grazing” payments. One farmer is comparing his grazing chart to his milk production records to understand milk per acre. Another farmer charts crops, color-coding the daily entries for planting, spraying, harvesting and manure spreading. When he comes in each fall to update his nutrient management plan,
all the information is at his fingertips.

I would love to hear from farmers who are utilizing some of the newer “apps” such as PastureMap™ or GrazingCalculator ™. Also on the horizon is goGraze™ currently in development as a companion to UVM Extension’s goCrop™ nutrient management software. Ultimately, there are tools available for everyone, whether you want to enter data on the go with your phone or like the comfort of having a tangible paper record.

A limited number of printed planning charts are available at our Middlebury office, or download a variety of templates at:
www.madcoswcd.com/grazing-charts

COVER CROPS: FROM RESEARCH TO REALITY

By Kirsten Workman, Agronomy Outreach Professional

For the last 5 years, our team has had grant funding from the USDA to do research and demonstration projects investigating novel ways of cover cropping in corn silage and soybean systems in Vermont. We started with a small project in 2013 in Ferrisburgh at Deer Valley Farm comparing 2 different cover crop mixtures planted into the standing corn and drilled after harvest. That project was successful and provided us with enough preliminary data to start investigating additional cover crop mixtures and planting timing on a larger basis.

In 2014, we started our NRCS Conservation Innovation Grant, “Better Cover Crop Mixes in Vermont.” This project enabled us to evaluate several three-way cover crop mixtures alongside a winter rye monoculture. The cover crops were planted into standing corn (at V5/V6 growth stage and at tassel) as well as drilled after harvest. Similarly, we interseeded into soybeans at R3-5 and R6-8. As a result, we ultimately evaluated 15 different three-way cover crop mixtures during 29 different planting events for a total of 319 research plots. This work could not have happened without our farm partners. For this project alone, we collaborated with 10 farms on 13 fields in 7 Vermont towns.

So what? you may wonder. These plots provided us with valuable data to share with producers, NRCS staff, technical service providers and agency folks, and that information is helping us make sound recommendations for successful cover cropping in Vermont. However, the true value of this project (and our other cover crop projects) is the ability to enable hundreds of Vermont farmers to witness, learn about and adopt this practice. In this single grant project described above, we were able to do some amazing outreach to farmers. This included 12 field days, 6 presentations, 7 newsletter articles and 5 Across the Fence television episodes. Our field days involved over 200 farmers, 61 agricultural business employees, and 112 agency staff. Our workshops and conferences reached 153 farmers, 81 ag. business employees and 221 agency staff. And while that in itself is a tremendous feat, the real so what is that we have seen exponential increases in the adoption of cover crops in Vermont over the last 3 to 5 years.

According to the U.S. Department of Agriculture’s Natural Resources Conservation Service (NRCS) data, “Vermont farmers planted a record-setting 25,727 acres of cover crops on more than 2,000 fields in 2016 on approximately 25% of all annual cropland in Vermont. That’s a 58% increase in the acres of protective winter cover crops planted in 2015.” By my count, it is a 250% increase from 2014. While these research and demonstration projects are by no means the sole reason for this impressive rate of adoption, I do believe they are an important piece of the puzzle. Enabling farmers in the Champlain Valley to approach these conservation practices with solid, local information that allows them to be successful. They are able to investigate species, planting methods, potential pitfalls and see for themselves when and if these cover crops make the most sense on their farms, in their soil and weather conditions and with their equipment. And most importantly they are getting the most out of their cover crops by establishing them in a truly effective way, meaning the cover crops are functioning as intended and providing erosion control, taking up manure nutrients, and protecting water quality. In addition, the farmers are figuring out how to do it more profitably, utilizing these cover crops for forage or as a key component in their no-till systems, using less seed and planting it better, and even growing their own seed. Essentially, Vermont farmers are making them an integral part of their farming operations. This is the true meaning of adoption. Not just throwing seed out there because there is cost-share money, but REALLY MAKING IT WORK.

An example of cover crop research plots comparing broadcasting seed on the soil surface versus planting with a no-till grain drill. Both were planted on the same day, after corn silage harvest, on Vergennes clay soil, and received aproximately 4,000 gallons of liquid dairy manure/acre. Pictures were taken about two months after planting and in the following spring.

 

CROP YIELD AND NITROGEN MANAGEMENT IN A COVER CROP, NO-TILL SYSTEM

By Kristin Williams, Agronomy Outreach Professional

We just finished a two-year, multi-farm study on the health of clay soils, funded through a VT Conservation Innovation Grant through the NRCS. Measures of soil health (using Cornell’s soil health test) were not consistent, and we found that comparing practices over time was more informative than comparing field to field. One interesting, and maybe
obvious, lesson was the correlation between soil health practices and crop yields.

So, how do soil health practices influence yield? Research suggests soil health can improve yields. It is important to note our project focused on  demonstration, not replicated research. We compared no-till and conventional/reduced till corn silage on 5 farms with clay fields in our region. A simple t-test revealed no significant difference in yield between no-till (19.1 tons/acre) and conventional (19.2 tons/acre). More importantly, we were able to demonstrate that a farmer can grow no-till without yield losses, and be successful with good management practices. A yield gain might take time as the soil builds up its condition.

We also wondered how cover crop species or mixes might affect corn silage yield. We had an opportunity to use a field where the corn was accidentally killed. We planted 15 different combinations, including 4 single species, 6 two-way mixes, and 5 three-way mixes. This project was a slight anomaly in that the cover crops were planted with a drill in late August, which allowed for a more vigorous production of all cover crops. Radish was a star in the fall, maximizing both phosphorus and nitrogen uptake. We did not measure phosphorus content in the spring, so we do not know how much was retained in the soil. It seems to have allowed
for more available nitrogen in the soil at the time of a pre-sidedress nitrogen test (PSNT), therefore requiring less nitrogen. Surprisingly, legume mix covers had good fall biomass, but that did not translate into more N mineralization.

We applied nitrogen to each plot as per the PSNT recommendation for 20 tons/acre corn silage. At the end of the season, we measured corn silage
yield and compared that to nitrogen applied (see graph). The winter rye plot had a lower corn silage yield and required more nitrogen. Other than the nutrient effect of less uptake and slower decomposition, there may have been a physical barrier created by the standing rye crop, which was particularly vigorous in the spring. However, our three-way mix (winter rye – oats – radish) actually had the highest average corn silage yield, even though it required more N at PSNT time than the pure radish stand.

So, do not go abandoning your winter rye just yet. In fact, we think this three-way mix has promise and we are looking for a mix that gives both fall and spring soil conservation. Radish alone will winter kill, which may be good for mineralization, but not as good for spring soil conservation. Oats also winter kill but provide faster fall soil cover than rye by itself.

When using an over-wintering cover crop, it is clear that timing and success of termination is critical for subsequent crop yields. Nitrogen mineralization may happen later in the season with a plant such as winter rye that has a heavier carbon content. In a no-till system particularly, you may need to adjust your nitrogen rates/timing and put more on upfront. If you are using cover crops, a PSNT seems like a wise investment.

It is also important to remember that soil health is a long game, and it may take time to see the results of your labors with cover crops. We have replicated this project by replanting these cover crops in the fall of 2016, this time planted in September, and will look at this again this coming season.

More info about UVM’s PSNT test can be found at:
go.uvm.edu/getpsnt

VERTICAL TILLAGE: HOW DOES IT FIT IN THE TILLAGE CONTINUUM?

By Rico Balzano, UVM Extension Agronomy Outreach Professional

Here in Vermont, when farmers are considering a no-till system, several
questions often arise: What about incorporating manure? What about cold
soils? What about ruts leftover from harvest? Vertical tillage offers a solution with minimal soil disturbance and virtually no soil inversion, thereby maintaining a natural soil structure essential for success when otherwise no-tilling.

Vertical tillage implement (Great Plains) with straight cutting disks, rotary harrow and rolling baskets.
Aerator machine (Gen-Til) equipped with coulters for vertical tillage.

Vertical tillage can be a vague and confusing term for both equipment dealers and farmers, mostly because there are so many implements that claim to accomplish vertical tillage. A very general definition of vertical tillage equipment is any implement with disks, shanks, or teeth that enter AND leave the soil vertically, only moving soil up and down. Implements that move soil horizontally, such as moldboard plows and disk harrows
(with concave disks), create restriction layers that impede water movement and root growth. These implements shear or smear the soil, which can lead to compaction in or below the tillage depth.

By definition in-line rippers and chisel plows (with straight points) are vertical tillage tools, and can be used to “reset” the soil profile when restriction layer(s) are present. Ideally, this “reset” should happen only when necessary and not on an annual basis, which would just amount to a conventional tillage system. Most often, vertical tillage refers to shallow or surface tillage that sizes and incorporates residue and manure without creating a stratification layer. Usually the depth is limited to 2” to avoid
creating a compacted layer under the seed. This allows vertical tillage to fit into a reduced tillage system, with the goal of seeding at or below tillage depth. Other advantages of vertical tillage in a reduced tillage system include warming the seed bed in the spring, incorporating
cover crop seed in the fall, incorporating manure, and leveling out ruts from harvest or other field activities.

Most vertical tillage tools consist of vertical cutting blades set straight or at a very shallow angle to size and incorporate residue while minimizing horizontal soil movement. Also, most implements have some combination of rolling baskets and cultivator wheels to break up clods and level the seed bed. Aerator machines can be effective vertical tillage tools, especially when equipped with some combination of coulters, rolling cultivators, or rolling baskets. Some manufacturers’ vertical tillage implements have
concave disks or straight disks set on an aggressive angle. These set-ups can help incorporate residue and manure, but increase the chances of smearing soil and creating compaction in the tillage zone. Care must be taken not to use ANY tillage implement when soil moisture is too high, as more harm than good will be done.


Where’s Rico? Rico Balzano has moved to the Rutland Extension office, but he is still an active part of our team and continues to be involved in programming
content and outreach. Contact him at:
(802) 773-3340 ext. 281, rico.balzano@uvm.edu

Upcoming Events: March and Early April, 2017

Events hosted or with programing support by us -the Champlain Valley Crop, Soil and Pasture Team:

  • Nutrient Management Planning Update Workshop. Tuesday March 7, 10am-2pm, Middlebury Extension Office.This workshop is part of a series for previous attendees of our NMP classes to update their plan for 2017. Additional days by appointment, contact Kirsten (802-388-4969 ext. 347).
  • Custom Manure Applicator Training. Wednesday March 8, 10am-2pm, Vergennes American Legion this location has changed. This workshop is part of a series of classes for custom manure applicators only. Contact Nate for more information (802-388-4969 ext. 348). Coordinated with the Northwest Crop and Pasture team.
  • Following the New Required Agricultural Practices (RAPs) in the Floodplain – for farmers. March 16, Conants Riverside Farm, Richmond and April 4, Middlebury Extension Office, 10am-12pm. Both workshops will be discussing floodplain agriculture including: manure spreading ban, incorporation of manure, cover crops on annual cropland, and limitations of stacked manure. For more information contact Nate (802-388-4969 ext. 348).
  • Manure Training for Farm Applicators. March 21, Woodnotch Farm, Shoreham and March 23, Leach Farmily Farm, Pawlett, 10am-2pm. For custom applicators, farmers and seasonal farm employees. Addressing RAPS – topics include: buffers along surface water and ditches, manure spreading ban dates, soil conditions for manure application, how to read a nutrient management plan (NMP), methods to minimize run-off of manure and its associated nutrients, and record keeping requirements. For more information contact Nate (802-388-4969 ext. 348).
  • No-Till Planter Clinic. April 6, Gosliga Farm, Addison, 10am-2pm. For more information contact Rico (802-773-3349 ext. 281).
More information or questions about any of these events can be obtained by contacting our office.
802-388-4969 ~ 23 Pond Lane, Suite 300 Middlebury, VT 05753
 ~~~~~~~
Events hosted by other affiliates:
  • Organic Dairy Producers Conference. March 9, 9am-4pm, Vermont Technical College. Hosted by the UVM Ext. North West Crops and Soils Team. More information can be found here.
  • Annual Grain Growers Conference. March 23, 9am-5pm, The Essex Resort & Spa. Hosted by the UVM Ext. North West Crops and Soils Team. More information can be found here.
  • Commercial Pesticide Applicator Training. March 30, 8:30am-4:00pm, Middlebury American Legion. For more information contact Ann Hazelrigg (802-656-0493)
  • Listening Tour: Agency of Agriculture (VAAFM).Ongoing, multiple dates and locations. More information can be found here.
  • Farm Business and Budget Clinics. UVM Extension. Ongoing, multiple dates and locations. More information can be found here.
Other News:
  • Winter Manure Spreading Ban will be lifted April 1, 2017. Even after this date the VT Agency of Agriculture, Food and Markets (VAAFM) prohibits spreading on frozen, saturated or snow covered ground. Questions should be directed to VAAFM.

Winter 2016-2017 Newsletter Introduction

Focus on Agriculture in the Champlain Valley and Beyond

jeffrey-carterBy Jeff Carter, UVM Ext. Agronomist

Champlain Valley Crop, Soil & Pasture Team Leader

 

We all have learned a lot about using no-till and cover crop farming practices on clay soils over the past few years, and feel good about it because improving soil health for the future really is important. If not, I don’t think you would be farming.

But the fabric of agriculture is a bit tricky as one side pulls the covers off the other, then back, and over and over. Field practices to improve crop yields and water infiltration come back to bite us with reports of fear that this will increase the amount of dissolved phosphorus in the soil, which is exactly what you want for better crops, but not if it leaks out and pollutes Lake Champlain. Now the quilt comes off again and it becomes apparent that the environmental damage may be increased by activities like improving soil health with tile drainage, no-till planting, even cover crop roots that go down into the soil to reduce compaction. All are field practices we promote with confidence that this will solve the “problem”.

Now in a recent report from Farm Journal, Field Agronomist Ken Ferrie discusses how improving soil health increases the concerns about nitrate and water-soluble phosphorus losses down through the soil. But let’s not stop with that part of the equation. This is not a bad thing; it’s just that now farmers need to be even more aware of how their field management practices impact their P losses. And how important the work we do at Extension to compare different cropping system components helps farmers decide what balance of tillage and crop types is right for their farm. One response is to stop if we are afraid; the other is to carefully move ahead with calculated confidence that we are making a positive difference, measure the effect, recognize some new problems, and move ahead.

carter-2016-december-photo-1-crop-smsize
“Wait a minute, I lost my pencil in this preferential flow pathway”.  As the season progresses, clay soils can develop cracks that swell open and then close when the soil gets saturated again in winter.

The Required Agriculture Practices are now here, and we will have a lot of “quilt pulling” as changing one thing like – requiring buffers along ditches – may trigger responses that are counter-productive like installing tile in the whole field and burying those ditches. Which way is better? I’m not sure; just that when the quilt gets pulled off me, I pull back. Switching to no-till corn is a proven way to help soil aggregate structure, greatly reduce soil erosion and reduce fossil fuel use. Yet the reaction is that preferential flow paths through the soil form as a conduit to move manure and P too fast through the soil matrix.

The Vermont Tile Drainage Advisory Group report has been submitted to the Agencies of Agriculture and Natural Resources, and will inform the Secretaries for their joint report to the legislature in January. I participated on that advisory group and the discussions highlighted that these issues are not simply good and bad. Every action, like improving soil drainage, forces a conflict between a current farm business and family sustainability, and the cost of water quality remediation for past indiscretions in our lake that we are faced with fixing.

The only way that we will be able to keep a reasonable perspective is for everyone (both sides of the bed) to continue to be vigilant to maintain a good balance of using our land resources to make money, but keep the water clean. This will never end, as the challenges of farming in Vermont are made more difficult with awareness of how a little P makes such a big problem in the Lake.

I heard a great quote: “there are no wrong turns on the journey, just course corrections when we figure out where we want to go next.” I think we should be focused on learning how to make the best next moves, together, for farming practices that will help us meet the P reduction goals of the Vermont Clean Water Act. I don’t agree with the folks who want to curtail the dairy industry in Vermont with hopes that a different farming model or land use is better. Get active in your local farmer watershed group (there are three in Vt.), come to conferences and workshops we offer to get better at these decisions, speak up so the general public and legislative policy makers hear your voice.

Have a question for Jeff? He can be reached at 802-388-4969 ext. 332 or jeff.carter@uvm.edu

Are you currently receiving our newsletters via e-mail? If not, you can SUBSCRIBE HERE.

Stay updated on our events via our blogpage, or via Facebook

A pdf version of our entire newsletter can be viewed here. Our team work is funded through multiple grants and could not be accomplished without our supporters and funders.

Individual newsletter articles can be viewed on the blog below.

Beginning Farmer and Rancher Benefits

By Jake Jacobs

UVM RMA Risk Management Education

USDA has established certain benefits designed to help beginning farmers and ranchers start their operations. These benefits include:

  • Exemption from paying the administrative fee for catastrophic and additional coverage policies;
  • Additional 10 percentage points of premium subsidy for additional coverage policies that have premium subsidy;
  • Use of the production history of farming operations that you were previously involved in the decision making or physical activities; and
  • An increase in the substitute Yield Adjustment, which allows you to replace a low yield due to an insured cause of loss, from 60 to 80 percent of the applicable transitional yield (T-Yield).

How to Apply for Benefits

You must apply for Beginning Farmer and Rancher benefits by your Federal crop insurance policy’s sales closing date. You are required to identify any previous farming or ranching experience and any exclusionary time periods you were under the age of 18, in post-secondary education, or active duty military. Talk to your crop insurance agent for more information.

Cover Crop Guidelines

Recently the Farm Service Agency (FSA), Natural Resource Conservation Service (NRCS) and Risk Management Agency (RMA) worked together to develop consistent, simple and flexible policy for cover crop practices. Search for “Cover Crops and Soil Health” at www.nrcs.usda.gov or contact your local agency for more information.

beginning-farmer
Being a young farmer is challenging enough, but learning about the best options for the business like Sayer Palmer is, can be even more difficult. Contact your crop insurance agent for Beginning Farmer and Rancher benefit information. Photo: Jenn Colby.

 

How Do We Decide When To No-Till Alfalfa?

Nathaniel SeveryConsider the Density and Vigor of Your Cover Crop

By Nate Severy

UVM Ext. Agronomy Outreach Professional

Over the past year there has been growing interest in the farming alfalfa 8242016community in trying to no-till alfalfa hay seedings into winter cover crops as a way of reducing erosion and saving time and fuel.  Come spring, there will be a number of farmers who want to plant then or early summer who will look at their fields wondering “should I plant now, or wait until later?” While we have not yet done any formal research looking at alfalfa establishment under different management systems and the associated economics, there are some clues that may be able to guide us until we have more data.

One clue we can look at when deciding whether to plant in early spring or early summer is cover crop stand density. (Late-summer seeding is also a consideration that we won’t discuss in this article.) We know from helping farmers no-till-renovate pastures/hay fields that a productive and competitive hay field will outcompete your no-till seedlings for light and nutrients.  We should expect this same thing to happen when we have cover crops.

A field was planted to winter rye after corn silage harvest in early September; by December it completely covered the soil surface and was between 4 and 6 inches high.

severy-pic-1-cropped
Dense cover crops like this winter rye can be good for soil conservation, but challenging for no-till planting.

This success was due in part to early planting, full seeding rate, and timely rain. In spring, we expect that this crop is going to take-off and, with proper management, will be very high yielding.  If alfalfa mix were planted into this stand in April without any control methods, will our seedlings be able to compete?  Maybe, but we wouldn’t count on it.  We are not suggesting that a productive stand is bad, as it provides many environmental and economics benefits, but it must be managed correctly.  So, in this situation, we would recommend that before seeding an alfalfa mix, a farmer should either terminate the cover crop, or wait until mid-May and harvest for livestock feed before seeding.  If the field is terminated in April, the alfalfa should be planted with a nurse crop like barley or oats.  If properly killed, the winter rye will be barely noticeable after about a month. If there is no nurse crop, there will be a substantial amount of bare ground which will be susceptible to erosion and weed pressure.

Another field was planted in late September 2015 to winter rye after corn silage harvest. By early April 2016, although the cover crop did protect against erosion, there was still a lot of bare soil.

severy-pic-2-cropped
In contrast to the first picture, a winter rye crop that was lower yielding will be less competition for a no-till crop like alfalfa.

A crop like this can produce high quality livestock feed, but will be very low yielding.  In this type of situation, the farmer can go ahead and plant alfalfa mix.  S/he can terminate the cover crop beforehand, but there should be enough open canopy that the cover crop should not be a problem.  This winter rye can later be mowed for livestock feed, or possibly even left and combined for seed for next fall’s cover crop.

Do you have questions about this work or would like assistance with no-till alfalfa? Contact Nate [802-388-4969 ext. 348, nathaniel.severy@uvm.edu]

Gullies – A Significant Source of Soil Loss

kristen-workmanBy Kirsten Workman

UVM Ext. Agronomy Outreach Professional

 

As farmers, nutrient management planners and soil conservationists, many of us deal with the estimated loss of soil from fields.  We often use a very important tool called the Revised Universal Soil Loss Equation (commonly referred to as RUSLE2).  If you have a nutrient management plan, you know about RUSLE2.  This tool, however, only estimates soil loss in the form of sheet and/or rill erosion.  This is the gradual and sometimes unnoticeable erosion that sheets off fields or that forms small, uniformly spaced and sized channels (less than 4 inches deep).  With proper crop rotations, reduced tillage, good cover cropping, good organic matter and even proper manure applications, we can manage for this erosion fairly simply and inexpensively.

Gullies, on the other hand, are the “unaccounted for” erosion that can have a major impact on soil loss, soil health, water quality, and crop yields.  Gullies are water formations with increased intensity to sheet and rill erosion, and can also exacerbate sheet/rill erosion. While we have all seen photos of giant gullies big enough to consume a tractor, those tend to be rare.  However, the gullies in Vermont farm fields are no less impactful on our landscape.  According to an older, but interesting analysis from USDA-NRCS in 1997, they estimated that (19 years ago), roughly 6.1 tons/acre of soil loss per year was attributed to gully erosion, making up roughly 58% of the total sediment lost through water erosion annually (the remaining 4.5 tons/acre/year was from sheet and rill erosion).

Types of Gullies

Ephemeral gullies recur in the same area each time they form, can be partially or totally erased or filled in with tillage, and frequently form in well-defined depressions or natural drainage in a field. As described by the USDA –NRCS (1997), “most ephemeral gullies occur on fields with highly erodible soils, little or no crop residue cover or where crop harvest disturbs the soil.” They are associated with water flow in areas where runoff is great, including snow-melt runoff like that experienced in the Northeast.

ephemeralgully_notitle
Ephemeral gully erosion on a moderately sloped Vergennes clay corn field in southern Chittenden County. The example pictured here equates to an estimated 9.9 tons of soil loss per year.+

True or ‘classic’ gullies are “channels too deep for normal tillage operations to erase.” (NRCS, 2015).  They may get bigger in subsequent years, but can also stabilize and become more permanent drainage channels.  They tend to start as ephemeral gullies that were left untreated.  They can also start as a result of tillage, for example adjacent to a dead furrow.  Or they may start at the edges of established grassed waterways or buffers that were inadequately sized or not maintained.

classicgully_notitle
Classic gully erosion on a field on a Covington and Vergennes clay soil corn field. This gully has since been fixed with assistance from NRCS. This gully started upland as an ephemeral gully but progressed into a classic gully. Cover crop and no-till weren’t enough to stop the gully erosion once it began. In two years, it was responsible for an estimated 234 tons of soil loss (or roughly 117 tons per year). +

In this pictured example, a gully started upland as an ephemeral gully, but when it reached a dead furrow, this larger scale channel formed. You can see how quickly a gully like this can be an even more significant contributor of soil loss than typical sheet and rill erosion. Depending on how the field is managed a gully like this can account for two to four times the sheet and rill erosion from an entire 25-acre field.  It’s hard to tell, but in the picture you can see the field had been cover cropped and no-till planted to corn, but it was too late to prevent the ultimate result.  This gully has subsequently been repaired and now has a diversion at the upland slope to prevent its reoccurrence.

Management Implications

This type of significant erosion has many costs associated with it: water quality degradation, decreased yields, and the sometimes significant costs to repair (potentially tens of thousands of dollars). The cost of fixing and maintaining an area where a classic gully has formed can be drastically more expensive and time intensive than preventing them from forming. Once a gully begins forming, additional measures will need to be implemented. Continuing to till and level out an ephemeral gully every year only introduces more soil into the drainage area for erosion.

Conservation practices to prevent gullies include grassed waterways, cover crops, crop rotation and no-till. These practices relate to not re-tilling the gully area, maintaining residue on the soil surface, keeping soil covered and preventing erosion from starting in the first place.

Management Strategies:

Grassed Waterways are constructed channels that are planted with fast growing grass species that are mowed regularly to reduce sedimentation. These waterways convey the water to a stable outlet where it will not cause erosion.  They not only significantly reduce erosion, but are located in the areas of the field where drainage wants to occur anyway and tend to not be very productive.  Once installed, they can be permanent with proper maintenance.

Conservation Crop Rotation is a management practice that simply changes the rotation pattern of the field in question. In dairy forage systems this includes reducing the number of years of corn production, and rotating into a perennial sod.

Cover Crops are close growing crops (grasses, legumes, forbs) planted to provide protection from soil erosion on annually cropped fields in the times between cash crop growth.  In addition to other conservation benefits, they provide significant decrease in erosion.

No-Till otherwise known as Residue Management is the limiting or elimination of soil disturbance to maintain plant residues on the soil surface all year.  By not tilling, soil is not exposed to erosion and it is more stable and able to infiltrate more water and support equipment operations without disturbance.  In conjunction with cover cropping, it may eliminate the need for grassed waterways or other more expensive conservation practices, if the gully erosion has not already become a serious problem.

Other soil conservation practices such as strip cropping and contour plowing on slopes can help prevent gully formation.

An existing classic gully will need repair.  This is a big ticket item.  It often requires significant machine time, may need stone or pipe, and often includes a water diversion structure to prevent it from forming again.  These can cost more than $20,000 per gully to repair.

Gully erosion is the not so hidden, but unaccounted for, source of erosion in our watersheds.  It is detrimental to our waterways, our cropland and pastures, and the sustainability of our farms.  Take an afternoon and take a look around your fields.  Do you see any gullies forming?  Do you see where gullies could potentially form?  See a gully in need of repair?  Visit your local NRCS office and get help, either stopping gullies before they start or fixing existing gully problems.

+ Estimations based on field observations and NRCS erosion calculations based on dimensions, frequency and soil type. 

References:

America’s Private Land. A Geography of Hope, United States Department of Agriculture—Natural Resources Conservation Service, Washington, DC (1997), p. 39 (https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs143_012458.pdf)

Gordon, Lee M., et al. Modeling long-term soil losses on agricultural fields due to ephemeral gully erosion, Journal of Soil and Water Conservation, Volume 63, Issue 4, 1 July 2008, Pages 173-181.

Poesen, J.,  et al., Gully erosion and environmental change: importance and research needs, CATENA, Volume 50, Issues 2–4, 1 January 2003, Pages 91-133.

Valentin, C., J. Poesen, Yong Li, Gully erosion: Impacts, factors and control, CATENA, Volume 63, Issues 2–3, 31 October 2005, Pages 132-153.

USDA-NRCS Wisconsin Field Office Technical Guide, Section 1-General Resource References. Ephemeral and Classic Gully Erosion Worksheet.  August 2015 (https://efotg.sc.egov.usda.gov/references/public/WI/Gully_Erosion_Prediction.pdf)

USDA-NRCS Vermont Field Office Technical Guide, Section 4 – Conservation Practices.

Do you have questions about soil conservation practices? Would you like to conduct a trial on your farm? Contact Kirsten [802-388-4969 ext. 347, kirsten.workman@uvm.edu]