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Abstract
Accurate riverine phosphorus concentration measurements are often critical to meet watershed management

goals. Phosphorus monitoring programs often rely on proxy variables such as turbidity and discharge and have
limited ability to accurately estimate concentrations of dissolved phosphorus fractions that are most bioavail-
able. Optical water quality sensors can make subhourly measurements and have been shown to reduce uncer-
tainty in load estimates and reveal high-frequency storm dynamics for nitrate and dissolved organic carbon. We
evaluated the utility of in situ UV-Visible spectrophotometers to predict total, dissolved, and soluble reactive
phosphorus concentrations in streams draining agricultural, urban, and forested land use/land covers. We pre-
sent the first statistically validated application of optical water quality sensors to demonstrate how sensors may
perform in predicting phosphorus fraction concentrations through training set models. Total
phosphorus predictions from UV-Visible spectra were optimal when models were site-specific, and the propor-
tion of variance explained was generally as high as or higher than the results of other studies that rely only on
discharge and turbidity. However, root mean square errors for total phosphorus models were relatively high
compared to the median concentrations at each site. Models to predict dissolved and soluble reactive phospho-
rus concentrations explained a greater proportion of the variance than any other known proxy variable tech-
nique, and results varied by land use/land cover. Though accuracy limitations remain, this approach has
potential to predict concurrent total, dissolved, and soluble reactive phosphorus concentrations at a high fre-
quency for many applications in water quality research and management communities.

Elevated phosphorus concentrations cause persistent prob-
lems such as eutrophication and potentially toxic cyanobac-
teria growth in many fresh waterbodies that impact
recreation, drinking water quality, property values, and ecosys-
tem health (Carpenter et al. 1998; Conley et al. 2009). To
address these challenges, watersheds are often managed to
reduce tributary total phosphorus (TP) loads (Sharpley
et al. 1994; Djodjic et al. 2002). Accurate tributary phosphorus
load estimation is critical to meet these management goals,
and TP load estimates assess the efficacy of watershed-scale
phosphorus reduction efforts (Medalie 2016). Episodic storm
events are particularly important to capture, since they deliver
disproportionately large loads of water, sediment, and

phosphorus (Jordan et al. 2007; Sharpley et al. 2008) and
phosphorus concentrations change rapidly during storms
(Correll et al. 1999).

TP is delivered to waterbodies in several forms that can dif-
fer in bioavailability for cyanobacteria growth (Correll 1998;
Giles et al. 2015; Isles et al. 2017). Phosphorus is most bio-
available as dissolved inorganic orthophosphate (PO4

3−), com-
monly measured as soluble reactive phosphorus (SRP), or as
part of the total dissolved phosphorus (TDP) fraction. A por-
tion of the organic phosphorus pool can also be directly bio-
available, or can be rapidly decomposed by heterotrophic
bacteria into the inorganic form that can be quickly utilized
(Kane et al. 2014). Particulate phosphorus has potential bio-
availability dependent upon the speciation of solid phase
phosphorus and its interaction with receiving water column
and pore-water solutions (Giles et al. 2015; Schroth
et al. 2015). Because each phosphorus fraction has differing

*Correspondence: mvaughan@lcbp.org

Additional Supporting Information may be found in the online version of
this article.

1

http://orcid.org/0000-0003-4408-2418
http://orcid.org/0000-0002-0150-5356
http://orcid.org/0000-0002-4234-3437
http://orcid.org/0000-0001-6077-8920
http://orcid.org/0000-0002-3155-9099
http://orcid.org/0000-0001-5553-3208
mailto:mvaughan@lcbp.org


degrees of bioavailability, understanding the magnitude and
dynamic chemical partitioning of riverine phosphorus frac-
tion loads delivered to a receiving waterbody is necessary to
inform management of potential cyanobacteria growth and to
reach desired management outcomes (Stumpf et al. 2012; Isles
et al. 2017). Long-term continuous monitoring is particularly
important to characterize changes as management decisions
and land-use change influence the amount and composition
of phosphorus delivery to receiving waterbodies (Dodd and
Sharpley 2016; Jarvie et al. 2017).

TP concentration estimates are often based on correlations
of lab-measured TP concentration from grab samples with
continuously measured discharge, turbidity, or a combination
of the two. Although these correlations can be strong (Hyer
et al. 2016), this approach has two disadvantages: (1) solute-
discharge and solute-turbidity relationships are variable
among storm events due to hysteresis effects and threshold
behavior changes (Dhillon and Inamdar 2013; Bieroza and
Heathwaite 2015) and (2) these methods only estimate TP
concentrations and typically do not provide critical informa-
tion on phosphorus partitioning. Alternatively, SRP concen-
tration can be directly measured in situ at an hourly to
subhourly frequency with newly available wet chemistry
instruments (e.g., Cohen et al. 2013).

In situ spectrophotometer sensors offer the potential to
concurrently measure multiple phosphorus fraction concen-
trations (e.g., TP, TDP, and SRP) at a high frequency continu-
ously with no reagents or waste products. These sensors
measure light absorbance in the UV-Visible spectrum and
have been shown to make continuous, concurrent, and accu-
rate measurements of dissolved organic carbon, nitrate
(NO3

−), and total suspended solids concentrations in surface
waters with varying environmental conditions and aqueous
matrices (Langergraber et al. 2003; Rieger et al. 2006;
Sakamoto et al. 2009; Fichot and Benner 2011). Because opti-
cal sensors can be deployed on a long-term basis and operate
continuously, researchers and watershed managers can better
characterize large episodic events when manual sampling may
be impractical, expensive, and/or unsafe (Saraceno et al. 2009;
Carey et al. 2014). Dynamics that occur on seasonal or diel
timescales are also better described by this approach
(Heffernan and Cohen 2010; Pellerin et al. 2012). While
methods that rely on discrete grab samples may assign a single
concentration to an entire storm or day of record, high-
frequency measurements capture short timescale hysteresis
and threshold behavior changes not documented by discrete
samples. In addition, optical sensors have the potential to pre-
dict nutrient concentrations and vertical profiles in lakes and
reservoirs, where concentration-discharge relationships are
not applicable (Birgand et al. 2016; Joung et al. 2017). Contin-
uous and high-frequency monitoring can improve accuracy of
load estimates (Guo et al. 2002; Pellerin et al. 2014), though
the improvement over concentration-discharge measurement
may be limited for some applications (Musolff et al. 2017).

Only a few researchers have attempted to use multiwave-
length UV-Visible spectrophotometers to estimate phosphorus
fraction concentrations in a limited number of environmental
conditions, and it is unknown how performance may differ
among streams draining different land uses and land covers
(LULCs). Unlike solutes such as nitrate and dissolved organic
carbon, most phosphorus fractions do not directly absorb light
in the UV-Visible spectrum, so calibrations with concentrations
of different phosphorus fractions rely on proxy correlations
alone, similar to correlations relating TP concentration to dis-
charge. This approach has also been used to predict other non-
UV-Visible wavelength light absorbing solutes (e.g., Si, Mn, and
Fe) with promising results (Birgand et al. 2016). Because spec-
trophotometers measure absorbance throughout the entire UV-
Visible spectrum, it is possible that multiple light sensitive
proxies covary with phosphorus fractions differently by site,
season, and/or storm event. Different phosphorus fractions
may be tracking light sensitive aqueous components that reflect
phosphorus provenance and biogeochemical cycling within a
particular catchment and across different temporal scales or
flow regimes. UV-Visible spectrophotometer sensors have
shown promise to predict phosphorus fractions in some
cases (Etheridge et al. 2014), though predictions of TP, TDP,
and SRP concentrations from optical sensors have not been
evaluated rigorously in a variety of systems. It is not known
to what extent site-specific calibrations are necessary as is
often the case for other solutes (e.g., Vaughan et al. 2017), or
whether multiple different phosphorus fraction concentra-
tions can be predicted accurately from UV-Visible absor-
bance spectra. If robust proxy correlations were developed,
phosphorus fractions could be measured continuously on
short timescales that capture rapid changes in hydrologic
and biogeochemical processes critical to inform watershed
management and nutrient reduction goals.

Generating algorithms to predict nutrient concentrations
from absorbance spectra presents a challenge due to the high
dimensionality of the independent variables (light absorbance
spectra) compared to the single response variable (nutrient
concentration). Partial least squares regression (PLSR) can be
used to harness the information of a rich collection of inde-
pendent variables to predict a desired dependent quantity.
PLSR is a technique that condenses independent variables into
orthogonal, uncorrelated components and combines them in
a multivariate model to predict the parameter of interest. Visi-
ble, near-infrared, and far-infrared reflectance spectra have
been used extensively in combination with the PLSR approach
to describe soil characteristics such as available phosphorus,
electrical conductivity, pH, organic carbon, lime requirement,
and cation exchange capacity (e.g., McCarty et al. 2002;
Viscarra Rossel et al. 2006). In addition, UV-Visible spectra
have been used to predict concentrations of various nutrients
in fresh and brackish water with encouraging results (Avagyan
et al. 2014; Birgand et al. 2016; Vaughan et al. 2017). How-
ever, previous studies evaluating this method to predict
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constituent concentrations in water have not presented model
validation results; that is, all of the available laboratory ana-
lyses were used to calibrate the model, without verifying pre-
dictions using independent observations.

We deployed spectrophotometers in well-characterized
watersheds of different LULCs (Rosenberg and Schroth 2017;
Vaughan et al. 2017) that drive different phosphorus dynam-
ics, concentrations, and partitioning. UV-Visible absorption
spectra from spectrophotometers were coupled with grab
water samples for conventional laboratory analysis of TP, TDP,
and SRP concentrations. Our objectives were to: (1) evaluate
in situ UV-Visible spectrophotometer prediction of TP, TDP,
and SRP concentrations in riverine waters, (2) compare predic-
tion performance in surface waters draining watersheds of var-
ious LULCs, and (3) present statistical validation of these
predictions. To our knowledge, this work constitutes the most
rigorous assessment to date of the utility of this sensor tech-
nology to predict multiple phosphorus fraction concentra-
tions across a range of riverine environments.

Study areas
The study sites were in the Lake Champlain Basin of Ver-

mont in the northeastern US (Table 1, Fig. 1). The study streams
were selected because their watershed LULC was dominantly
agricultural, urban, or forested, and each watershed met criteria
for watershed size, accessibility, and discharge data availability.
Hungerford Brook is a primarily agricultural catchment, includ-
ing dairy production, row crops, hay, and pasture. Potash Brook

is situated near the city of Burlington, which is Vermont’s dens-
est population center. Its watershed is primarily characterized
by urban and suburban development (54%), and includes some
agricultural and forest cover (29% and 11%, respectively). The
Wade Brook catchment is primarily forested (95%) and is situ-
ated on the western slope of Vermont’s Green Mountain chain.

Table 1. Summary of study area characteristics.

Hungerford Brook Potash Brook Wade Brook

Primary land cover Agricultural Urban/suburban Forested

Watershed area (km2) 48.1 18.4 16.7

Percent forested 40.5 10.6 95.1

Percent agricultural 44.8 29.1 0.6

Percent urban 5.6 53.5 0.8

Percent impervious area 2.3 23.9 0.0

Sensor elevation (m) 80 42 320

Maximum watershed

elevation (m)

354 143 981

Mean watershed slope (%) 5.6 5.3 26

Mean air temperature (�C) 6.7 7.8 4.2

Mean annual precipitation
(mm)

1000 961 1453

Sensor optical path

length (mm)

5.0 5.0 15.0

Coordinates (WGS 1984) 44.918403�N, 73.055664�W 44.444331�N, 73.214482�W 44.864468�N, 72.552904�W
Soil and surficial geology Sandy, silty, and stony loams Sandy and silty loams, clay Glacial till, sandy loam

Vegetation Agricultural, mixed northern hardwoods

and conifer

Urban/suburban landscaping, mixed

northern hardwoods and conifer,

agricultural

Mixed northern hardwoods

and conifer

Fig. 1. Map showing location and land use/land cover of the three study
areas.
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Hungerford Brook and Wade Brook drain to the Missisquoi
River and Lake Champlain; Potash Brook drains directly to Lake
Champlain. Precipitation totals in the Wade Brook catchment
are higher than the catchments of Hungerford Brook and Potash
Brook due to orographic effects (Table 1).

Methods
In-stream measurements

We used s::can Spectrolyser UV-Visible spectrophotometers
(s::can Messtechnik GmbH, Vienna, Austria) in each stream,
deployed from June 2014 to December 2016 for spring, sum-
mer, and fall seasons. The sensors were housed in PVC tubing
for protection during high flows, were solar powered for
autonomous operation, and transmitted summary data
through a cellular data network. Full UV-Visible spectra mea-
surements were stored on-board the sensor and downloaded
manually on site. The spectrophotometers measured light
absorbance at wavelengths ranging from 220 nm to 750 nm
at 2.5 nm increments and were programmed to take measure-
ments every 15 min. Optical path lengths were either 5 mm
or 15 mm, depending on the typical turbidity of each stream
(Table 1), and absorbance spectra were normalized by optical
path length for comparison. Sensor measurement windows
were automatically cleaned before each measurement with a
silicone wiper and cleaned manually in the field at least every
2 weeks using pure ethanol. To focus on dissolved constitu-
ents, raw absorbance spectra were corrected for the effects of
turbidity by fitting a third-order polynomial in the visible
range of the spectrum, extrapolating into the UV portion, and
then subtracting the extrapolated absorbance from the raw
spectrum (Langergraber et al. 2003; Avagyan et al. 2014).

Laboratory measurements
Manual grab samples were collected at the sensor sites

across the monitored seasons during baseflow and storms
(peak flow, rising, and falling limb), timed to coincide with
sensor measurements to calibrate in situ UV-Visible absor-
bance spectra to laboratory TP, TDP, and SRP concentration
measurements (Fig. 2). Care was taken to collect samples
directly adjacent to the sensor measurement window. We ana-
lyzed a total of 560 grab samples over the course of the study.
Samples taken in 2015 were analyzed for TDP and SRP; sam-
ples taken in 2016 were analyzed for TP, TDP, and SRP. We fil-
tered TDP and SRP samples in the field using sample-rinsed
glass fiber GF/F filters (nominal pore size of 0.7 μm) into new,
triple-rinsed HDPE bottles, and collected TP samples from the
stream without filtering. This filter size differs from that of
some others studies where 0.45 μm filters are used. This may
influence absolute lab value comparability (where values in
this study may be slightly higher in comparison), but would
not influence the evaluation of model calibration or validation
techniques, which is the focus of this work. We stored samples
on ice in the field and in transport, then stored either in a

cooler at 2�C (for TDP and SRP samples) or in a freezer at
−23�C (for TP samples) until analysis.

We analyzed for TP concentration by first liberating organic
phosphorus as inorganic phosphorus through oxidation by
persulfate, followed by the molybdate method (US EPA
method 365.1 4500-PJ). We measured TDP concentration the
same way as TP after samples had been filtered as described
above. SRP concentration was determined colorimetrically by
measuring absorbance of 885 nm following sample reaction
with molybdate, ascorbic acid, and trivalent antimony, also
consistent with US EPA method 365.1 (Parsons et al. 1984).
For each analyte, the nonparametric Kruskal–Wallis test
(Kruskal and Wallis 1952) was used to determine whether con-
centrations were significantly different among the three sites.

Phosphorus fraction concentration prediction: Training
and validation techniques

When reporting correlations of a particular method to pre-
dict lab measurements, it is common to develop a model using
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Fig. 2. Discharge (gray lines) and manual grab sample times (black verti-
cal lines) at the (a-b) agricultural, (c-d) urban, and (e-f) forested sites.
Samples taken in 2015 were analyzed for TDP and SRP; samples taken in
2016 were analyzed for TP, TDP, and SRP.
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all available data and then assume model statistics will apply
to future predictions using unknown data. In contrast, we
used a bootstrapping technique to validate the accuracy of cal-
ibration models built on only a portion of the data to provide
a more robust method to assess uncertainty in concentration
prediction. Training and validation prediction sets were gener-
ated for TP, TDP, and SRP using combined data from all sites
for each parameter, and by separating the available data by
site. For each training dataset, 85% of available observations
were selected randomly to generate a model. The model was
developed by an identical approach to Etheridge et al. (2014),
where PLSR was employed with the pls package in R to gener-
ate calibration algorithms (Mevik et al. 2015; R Core Team
2015). Each model incorporated a number of components
equal to a maximum of approximately 10% of the observa-
tions as recommended by Mevik et al. (2015).

The training model was then used to predict a validation
set, which was comprised of the remaining 15% of observa-
tions that were randomly withheld. This process was repeated
1000 times with replacement for each parameter, and predic-
tions and statistics for each model were collected and aggre-
gated. We then calculated the means and standard deviations
of predicted concentration values for all 1000 iterations of
training and validation sets. Sensor performance was evalu-
ated by performing linear correlations on the mean predicted
value for training and validation sets vs. the corresponding
lab-measured values. Throughout the article, adjusted R2

values are presented to compare goodness of fit for regressions
to remove the bias associated with differing sample sizes
(Ohtani 2000), and root mean square errors (RMSEs) are pre-
sented as estimates of model accuracy. The result of this pro-
cess is a quantifiable level of confidence for how accurately
UV-Visible absorbance spectra may predict TP, TDP, and SRP
concentrations at times when no lab measurement is available
for comparison. This type of model validation is common in
many disciplines and is more robust than other approaches
that develop models using the entire available dataset and
therefore provide stronger prediction statistics (Aber 1997).

Logarithmically transformed discharge or turbidity measure-
ments are often used to predict riverine TP concentrations
(Hirsch et al. 2010; Stutter et al. 2017). We performed multiple
linear regressions using these two variables to predict TP con-
centrations at each site and compared this method with the
performance of the UV-Visible spectrophotometers. These
models included all available data for each site in order to form
comparisons using the most favorable case for this method.

Results
Phosphorus grab samples and UV-Visible absorbance
measurements

The nonparametric Kruskal–Wallis test revealed that grab sam-
ple concentrations for TP, TDP, and SRP were each significantly
different among these three sites (p < 0.001; Table 2). When UV-
Visible absorbance spectra were plotted and colored by corre-
sponding phosphorus fraction concentrations, it is evident that
much of the variability in UV-Visible spectra occurs in the wave-
length range of 220–350 nm (Fig. 3). Furthermore, while gener-
ally higher absorbances correspond with higher phosphorus
fraction concentrations, complex relationships exist between
spectral data and phosphorus fraction concentrations. The ratio
of lab-measured TDP to TP concentrations and the ratio of lab-
measured SRP to TP concentrations varied considerably at the
agricultural and urban sites, and the ratio of SRP to TP was signifi-
cantly different between these sites as determined by the non-
parametric Mann–Whitney U test (p = 0.001) (Fig. 4). The
highest observed concentrations of TDP and SRP were higher
than the highest TP concentration because relatively large storms
in 2015 produced high TDP and SRP concentrations and TP con-
centrations were not measured at that time.

Total phosphorus
Predictive models for TP were developed using data for all

sites, with 10 components (11% of observations). The training
sets explained a relatively high proportion of the variance in
TP concentration (adj. R2 = 0.96; p < 0.001), while correlations
from the bootstrap validation method explained approxi-
mately three-quarters of the variance in TP concentration (adj.
R2 = 0.78; p < 0.001) (Fig. 5). RMSEs were 25 μg P L−1 for
training sets and 59 μg P L−1 for validation sets. The RMSE of
the validation set was 75% of the median TP concentration

Table 2. Summary statistics for grab samples collected at the
study sites (all concentrations are in μg P L−1).

Agricultural Urban Forested

Total phosphorus (2016 only)
Count 36 27 42

Minimum 13.4 6.50 0.70

Maximum 917 89.6 12.3

Median 79.0 20.6 3.8

Mean 130 24.7 4.5

Variance 31.6 0.40 < 0.10

Total dissolved phosphorus (2015–2016)

Count 77 80 89

Minimum 8.50 3.5 1.8

Maximum 1413 263 31.6

Median 63.0 32.1 7.6

Mean 133 64.6 10.7

Variance 42.2 5.4 0.10

Soluble reactive phosphorus (2015–2016)

Count 77 105 89

Minimum 3.0 0.30 0.60

Maximum 1240 231.5 22.8

Median 46.2 17.4 4.2

Mean 110 37.1 6.9

Variance 35.3 2.6 < 0.10
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for the agricultural site, and was 3 and 16 times greater than
the median TP concentrations at the urban and forested sites,
respectively. Separating datasets by site did not improve good-
ness of fit for predictive models, though it resulted in valida-
tion RMSE values that were 74–80% of the median TP
concentrations at the urban and forested sites (Table 3).

When logarithmically transformed discharge and turbidity
measurements were used to predict TP concentration using a
multiple linear regression model for each site separately, the
adjusted coefficients of determination were 0.05, 0.14, and
0.41 for the forested, urban, and agricultural sites, respectively.
However, models for the forested and urban sites were not sta-
tistically significant and the accuracy for the agricultural site
model was lower than for models based on the UV-Visible
absorbance spectra (RMSE = 138 μg P L−1).

Total dissolved phosphorus
Predictive models for TDP using data for all sites were

developed with 18 components (8% of observations). The
training sets explained a relatively high proportion of the vari-
ance in TDP concentrations (adj. R2 = 0.96; p < 0.001), while
correlations from the bootstrap validation method explained
nearly two-thirds of the variance in TDP concentration (adj.
R2 = 0.61; p < 0.001) (Table 3; Fig. 6a,b). Separating datasets
by site increased accuracy and the proportion of the variance
explained in validation sets for the urban site (adj. R2 = 0.68;
p < 0.001) and the forested site (adj. R2 = 0.74; p < 0.001) with
eight components, but did not improve validation perfor-
mance at the agriculture site. Accuracies for these models were
limited, however. Validation set RMSEs were greater than the
median TDP concentrations for the agricultural and urban

Fig. 3. Plots of compensated UV-Visible absorbance spectra vs. wavelength
of light and corresponding (a–c) TP, (d–f) TDP, and (g–i) SRP concentra-
tions (μg P L−1) in color for agricultural, urban, and forested sites.

(a)

(b)

Fig. 4. Box and whisker plots of the ratios of (a) TDP to TP and (b) SRP
to TP for the agricultural and urban sites in 2016. Data from the forested
site is not shown, since concentration differences between different opera-
tionally defined fractions were within the range of analytical error.
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sites, and was 55% of the median TDP concentration for the
forested site. Plotting residuals in the TDP models by
lab-measured value, turbidity, and discharge did not reveal dis-
cernable patterns in prediction error (Supporting Informa-
tion Fig. B).

Soluble reactive phosphorus
Predictive models for SRP concentration using data for all sites

were developed with 18 components (7% of observations). The
training sets explained a relatively high proportion of the vari-
ance in SRP concentration (adj. R2 = 0.96; p < 0.001), while

Fig. 5. Bootstrap TP training and validation plots for (a, b) all combined, (c, d) agricultural, (e, f) urban, and (g, h) forested sites. Correlations were statistically
significant (p < 0.001) for all but the forested validation sets (h). Shading represents 90% confidence intervals. Error bars represent one standard deviation for
the predictions over 1000 bootstrap iterations. Note that error bars are present for all points but may not be visible and that scales differ among plots.

Table 3. Summary of PLSR model results.

Site(s) Observations Components
Training
adj. R2

Training
RMSE (μg P L−1)

Validation
adj. R2

Validation
RMSE (μg P L−1)

Total phosphorus
All 90 10 0.96 25 0.78 59

Agricultural 31 4 0.85 70 0.61 115

Urban 24 3 0.41 14 0.24 17

Forested 36 4 0.49 1.9 −0.02 2.8

Total dissolved phosphorus

All 222 18 0.96 29 0.61 90

Agricultural 70 8 0.88 73 0.56 147

Urban 73 8 0.90 24 0.68 43

Forested 79 9 0.94 1.8 0.72 4.2

Soluble reactive phosphorus

All 247 18 0.96 23 0.68 68

Agricultural 70 8 0.92 54 0.70 109

Urban 98 10 0.94 13 0.57 36

Forested 79 9 0.95 1.2 0.79 2.4
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correlations from the bootstrap validation method explained
approximately two-thirds of the variance in SRP concentration
(adj. R2 = 0.68; p < 0.001) (Table 3; Fig. 7a,b). Separating datasets
by site improved validation accuracy for the urban and forested
sites, but did not improve validation accuracy at the agriculture
site (Fig. 7c–h). As with TDP models, no discernable patterns
could be found by plotting SRP model residuals by lab-measured
value, turbidity, and discharge (Supporting Information Fig. C).

Discussion
UV-Visible spectra as proxies for phosphorus fraction
concentrations

Integrated results from this study suggest that in situ UV-
Visible spectrophotometers can concurrently predict the con-
centration and distribution of the phosphorus fractions (TP,
TDP, and SRP) at a high frequency and with modest and vari-
able accuracy that may be suitable for some applications
(Fig. 8). Model goodness of fit statistics for these fractions are
among the most favorable published for other proxy models.
Accuracy limitations remain, however, as RMSE statistics were
relatively high compared to median concentration values at
our study sites. These analyses indicate that in streams drain-
ing watersheds of different primary LULCs and varying sea-
sonal and event conditions, the measured UV-Visible
absorbance spectra covaried with a suite of constituents that

varied in proportion with phosphorus fractions of interest.
The degree to which phosphorus fraction concentration
correlates with components of the absorbance spectra can be
site-specific and may vary by fraction and/or dominant
biogeochemical processes and hydrologic pathways within a
particular catchment. In the following discussion, we focus on
the strengths and limitations of this approach, and make rec-
ommendations for how researchers and water resource man-
agers can use this technology for monitoring phosphorus.

Models to predict TP concentrations using all data available
explained a relatively high proportion of the variance, but had
RMSE values that were higher than the median concentrations
at the urban and forested sites (Fig. 5a,b). Site-specific models
had higher accuracy but lower predictive power for the for-
ested site where phosphorus concentrations were lower. We
found that models from UV-Visible spectra explained more of
the variance in TP concentration than multiple linear regres-
sion models using turbidity and logarithmically transformed
discharge. The method for TP prediction demonstrated here
may be best used in agricultural areas or other sites with ele-
vated TP phosphorus concentrations; these areas may also be
where this technology could be most useful for informing
management goals.

The UV-Visible spectra were used to predict TDP and SRP
concentrations with a greater proportion of variance explained
than any other models based on a high-frequency method

Fig. 6. Bootstrap TDP training and validation plots for (a, b) all combined, (c, d) agricultural, (e, f) urban, and (g, h) forested sites. All correlations were
statistically significant (p < 0.001). Shading represents 90% confidence intervals. Error bars represent one standard deviation for the predictions over
1000 bootstrap iterations. Note that error bars are present for all points but may not be visible and that scales differ among plots.
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known to the authors, though RMSE values indicate limited
accuracy for low concentrations. The proportion of variance
explained suggests that this method is a useful approach to
characterize TDP and SRP concentrations, particularly during
hot moments for phosphorus transport when concentrations
can become elevated (e.g., Underwood et al. 2017). The high
bioavailability of dissolved phosphorus fractions makes the
unique ability of this approach to model both the TDP and
SRP fractions particularly useful. Furthermore, the necessity of
site-specific models suggests that sources and pools of dis-
solved phosphorus likely differ among sites, and that phos-
phorus fractions covary with different components of the
water matrix in contrasting LULCs. In the forested site,
organic and inorganic P cycling is primarily from parent mate-
rial weathering and ecosystem cycling (Likens 2013). While
these processes also occur in the urban and agricultural sys-
tems, fertilizer amendments and other human activities in
urban and agricultural catchments add additional organic and
inorganic phosphorus (Dalo�glu et al. 2012). Since UV-Visible
spectrophotometers have been shown to accurately model dis-
solved organic carbon concentration (Ruhala and Zarnetske
2017; Vaughan et al. 2017), variance in the phosphorus
models may be explained by the presence of organically
bound phosphorus. These pools are likely to differ among
LULCs, which have very different sources and pools of organic
matter (Sickman et al. 2007; Wilson and Xenopoulos 2009).
These differences are often more pronounced during storm

events, when rapid changes in hydrology cause changes in
connectivity of differing source areas (e.g., edge of a row crop
field vs. a suburban development) to streams.

Site-specific TDP and SRP concentration models performed
better than models based on data from all sites for each solute.
Therefore, each stream has a distinct relationship between the
portion of the aqueous matrix that absorbs UV-Visible light
and dissolved phosphorus fraction concentrations (Fig. 3). The
PLSR method tested here relies on the shape of each UV-
Visible spectrum curve to determine the phosphorus fraction
concentration rather than a narrow wavelength range of abso-
lute absorbance values. This result indicates that the method
uses these distinct relationships between dissolved phospho-
rus fractions and various aqueous and solid constituents that
absorb light across the UV-Visible range that manifest in vari-
able absorbance spectra. While it seems that site-specific cali-
brations were optimal in this study, it is not yet known
whether these relationship differences are due to LULC alone,
or whether sites with similar LULCs could have different rela-
tionships. Further testing at several agricultural sites, for exam-
ple, would help determine whether models should be strictly
site-specific, or if LULC-specific models could suffice.

Comparison to other approaches
Several other studies have attempted to relate phosphorus

fraction concentrations with parameters that are easier,
cheaper, and faster to measure than direct measurement with

Fig. 7. Bootstrap SRP training and validation plots for (a, b) all combined, (c, d) agricultural, (e, f) urban, and (g, h) forested sites. All correlations were
statistically significant (p < 0.001). Shading represents 90% confidence intervals. Error bars represent one standard deviation for the predictions over
1000 bootstrap iterations. Note that error bars are present for all points but may not be visible and that scales differ among plots.
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wet chemistry lab techniques. Other studies showed that
roughly 60–95% of the variance in TP concentration can be
explained by turbidity or discharge, or these variables in com-
bination with other proxy variables (Table 4). Results from
these studies are derived from models that were based on the
predicted data that were used to build the models originally.
Thus, their results are most comparable to the training sets
reported here, with the difference that 100% of the measure-
ments were commonly used in these other studies, while 85%
of the data was used in our training sets. The variance
explained in training sets in this study was near or above 90%
for all models, exceeding that of most other models reported
in the literature. In addition, when we attempted to use loga-
rithmically transformed discharge and turbidity measurements
to predict TP concentrations, we found that these models
explained a lower proportion of the variance compared with
models based on UV-Visible absorbance spectra. Only 55% of

the variance in TP concentrations could be explained by a
combination of discharge and turbidity, while 96% of the vari-
ance in TP concentrations could be explained by the training
model derived from the UV-Visible spectra. The higher propor-
tion of variance explained by the spectrophotometric proxies
compared to the discharge and turbidity proxies may be
because our systems are smaller and more susceptible to short-
timescale hysteresis-related changes in the relationship
between these variables. Other studies that reported a higher
proportion of variance in TP concentration explained were in
rivers with larger watershed areas than we investigated.

Few studies have investigated the relationship between
TDP and SRP concentrations and proxy variables. Underwood
et al. (2017) recently used Bayesian linear regression to corre-
late TDP to discharge and identify operational thresholds
where shifts in these relationships occur. More often, TP is
predicted using a proxy such as turbidity or discharge, and a
percentage of TDP or SRP to TP from a subset of samples is
applied uniformly to estimate TDP or SRP loads (e.g., Johnes
2007). We observed that the ratios of lab-measured TDP to TP
and SRP to TP varied considerably (Fig. 4), so assuming a con-
stant relationship between these fractions would lead to con-
siderable errors in phosphorus fraction load estimation in the
systems studied here. Stubblefield et al. (2007) found no corre-
lation between SRP concentration and turbidity measurements
in a subalpine forested stream where the discharge-weighted
mean SRP concentration was 8.7% of the TP concentration.
Using similar methods to this study, Birgand et al. (2016)
found that UV-Visible absorbance explained 89% of the vari-
ance in observed SRP concentrations in a eutrophic drinking
water reservoir, which is similar to the model results for our
SRP model training sets. Besides environmental setting, that
study differed from this one in a few notable ways: seven com-
ponents were used with 36 samples to develop a calibration
(~ 20% rather than ~ 10% of the number of observations used
here), SRP concentrations ranged from 3.5 μg P L−1 to 10 μg P
L−1 (a narrower range than our sites), and no model validation
results were reported.

For high-frequency water quality measurements, in situ
UV-Visible spectrophotometers have several advantages and
some limitations. Advantages include the ability to measure
multiple parameters concurrently and rapidly with no
reagents, and to deploy sensors for continuous monitoring of
baseflow and larger episodic events. There are field-robust
models available that have few moving parts to service. How-
ever, limitations include their high cost (currently greater than
US$15,000), which can be prohibitive. As discussed above,
UV-Visible spectrophotometer accuracy for phosphorus frac-
tion concentrations and some other analytes may not be
acceptable for some applications, particularly at relatively low-
phosphorus concentrations. For the s::can sensor used here,
two further limitations were on-board memory storage and
power draw. On-board memory capacity allowed storage of
roughly 15 d of observations at a 15-min sampling interval. It

Fig. 8. Examples of modeled 15-min phosphorus fraction concentrations
using UV-Visible spectra (black dots) and lab-measured values (red
squares) for (a) TP at the agricultural site, (b) TDP at the urban site, and
(c) SRP at the forested site.
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was a challenge at times to provide necessary power to the
sensors when light to our solar panel array was limited by sea-
son and/or tree canopy cover.

Instruments that use wet chemistry techniques to measure
SRP concentrations directly with the ascorbic acid method in
situ have recently become available. For example, the Cycle-
PO4 instrument (Wetlabs, Philomath, Oregon, U.S.A.) makes
direct measurements of SRP concentration with onboard stan-
dard checks, which may produce a more accurate estimate of
SRP concentration. Results from Cohen et al. (2013) and
Sherson et al. (2015) suggest that the Cycle-PO4 measures SRP
more accurately than the UV-Visible spectrophotometers
tested here at low concentrations. The Systea WIZ probe
(Systea, Anagni, Italy) has a similar method to the Cycle-PO4
and also tested relatively well for predicting SRP concentration
in recent evaluations (Copetti et al. 2017; Johengen et al.
2017). However, these instruments have several components
such as pumps, switches, and filters that are prone to malfunc-
tion; they use reagents that generate hazardous waste; and
they are more prone to fouling (Pellerin et al. 2016). Both the
Cycle-PO4 and the Systea-PO4 have limited capacity to mea-
sure elevated SRP concentrations, such as those found in our
agricultural and urban sites. The Cycle-PO4 is specified for SRP
concentrations of 0–300 μg P L−1, and the Systea-PO4 was
shown to have limited accuracy for concentrations above
40 μg P L−1. In addition, limited reagent lifetime and sampling
frequency precludes the Cycle-PO4 sensor from long-term
deployments in remote or rapidly changing environments.
The sampling frequency also limits its application for vertical
or lateral profiling, where UV-Visible spectrophotometers can
be useful. A UV-Visible spectrophotometer is preferable to an
in situ wet chemistry instrument if researchers would benefit
from concurrent measurements of multiple phosphorus frac-
tions (TP, TDP, and SRP), nitrate (e.g., Rode et al. 2016), dis-
solved organic carbon (e.g., Ruhala and Zarnetske 2017), and
other potential analytes (Birgand et al. 2016) with a single
instrument. This concurrent measurement advantage may be
the greatest strength of the UV-Visible spectra approach,
though building a calibration dataset comes with a consider-
able cost that will depend on site-specific considerations.

To the authors’ knowledge, this study is the first to use a
rigorous bootstrap validation technique to investigate how
well models predict phosphorus fraction concentrations where
lab-measured values are not available. Etheridge et al. (2014)
and Vaughan et al. (2017) are the only studies we are aware of
that test nutrient prediction models by withholding a portion
of each calibration dataset (equal to 10% in those studies).
This study takes the next step in repeating these validations
many times with random observation set selection to reduce
sampling error when selecting the 15% to withhold. Our
results reflect the expectation that validation models explain
less variance than training models (Table 3) and demonstrate
that method performance may have been inflated by reporting
of training sets alone in previous studies. Validation sets are

standard for larger-scale models in other scientific disciplines
such as global climate general circulation models (Chervin
1981; Flato et al. 2013), though the exercise is valuable when
using a model to predict a dependent variable at any scale. We
recommend that future studies using high-frequency water
quality sensors perform model validation with bootstrapping
to more rigorously estimate uncertainty for new analyte con-
centration predictions. This approach is particularly useful
when developing models that rely on absorbance spectra
derived from in situ spectrophotometers to project the con-
centration of solutes such as dissolved phosphorus fractions
that do not directly absorb light in the UV-Visible spectrum.

Implications for application in watershed monitoring
The advantage of high-frequency water quality data is gen-

erally twofold: it can reveal short-timescale effects previously
invisible to researchers, and it can aid in more accurate load
estimation. Because our results indicate that UV-Visible absor-
bance is generally sensitive to changes in phosphorus fraction
concentrations (models had acceptable coefficients of determi-
nation), but had relatively low accuracy (models had relatively
high RMSE values), we suggest that in situ spectrophotometers
are best applied to understanding short-timescale phos-
phorus dynamics, especially in systems with relatively
high-phosphorus fraction concentrations. Depending on site-
specific model performance, this technology may be suited to
provide valuable, yet possibly semi-quantitative information
about phosphorus fraction dynamics during storms or diel
cycles, illuminating potential nutrient sources and biological
processes. This technique could be especially informative
when developed in combination with models for other useful
parameters (e.g., nitrate and dissolved organic carbon).

The relatively high RMSE value to median concentrations
ratios found here suggest that phosphorus load estimates cal-
culated with this method may have substantial uncertainty,
unless site-specific models elsewhere show improved accuracy.
Optimal models to predict TP concentration had RMSE values
that were 75–80% of median TP concentrations. This ratio is
an indication of the level of uncertainty a load estimate may
have, though actual uncertainty would depend on annual
hydrologic conditions and site-specific factors.

Conclusions and recommendations
We have shown that UV-Visible spectra collected by in situ

spectrophotometric sensors can be used to simultaneously pre-
dict TP, TDP, and SRP concentrations in many situations. For
our sites, the ratios of TDP to TP and SRP to TP varied notably,
so that if high-frequency measurements of TDP and SRP were
of main interest in a study or management decision, the use
of in situ spectrophotometers is clearly warranted. Since
these sensors also measure turbidity, nitrate, and dissolved
organic carbon concentrations, there is the capability to mea-
sure diverse chemical constituents concurrently. If estimates
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for these other parameters are a primary monitoring goal,
phosphorus fractions model development could be a relatively
low-risk, low-cost addition.

This technology is best suited to sites with elevated TP con-
centrations if TP concentrations are the primary fraction of
interest. We recommend that all models be checked to deter-
mine if separating data by site improves or weakens model
performance. When using the PLSR method, we recommend
following Mevik et al. (2015) to use the number of compo-
nents equal to ~ 10% of observations, as a higher percentage
of components can lead to over-parameterization. Over-
parameterization may lead to more favorable training model
statistics, but also to weaker validation model performance sta-
tistics, and noisier and less accurate time series prediction. The
success of this method may be influenced by the number and
variety of grab samples that can be attained, analyzed, and
incorporated into prediction models. We recommend that
users of this technology take care to obtain grab samples as
close in time and space to the sensor measurement as possible
to obtain a reliable calibration.

There has been significant effort to create “global calibra-
tions” or calibration “libraries” for various predictive proxies
and predicted constituents (e.g., Shepherd and Walsh 2002).
Although this type of effort is beyond the scope of this study,
our results indicate that that common models for phosphorus
fraction concentrations were not preferable to site-specific
models for three sites with variable LULC. Future work is nec-
essary to rule out the possibility of a more extensive library to
explain a greater amount of variance across multiple types of
sites and water matrices.

The number of samples needed to develop useful models to
predict phosphorus fraction concentrations using UV-Visible
spectra will be dependent on many factors that will likely be
site-specific. For example, the greater the variability in the
concentration at the monitoring location, the more samples
will be needed to form an adequate predictive model.
Although evaluating these criteria will depend on subjective
expert opinion, researcher geochemical/hydrologic intuition,
and available observational data prior to sensor deployment,
we suggest that an adequate PLSR model must meet the fol-
lowing conditions:

1. The PLSR model has a validated accuracy and goodness of
fit that is acceptable for the application.

2. The number of observations is equal to or greater than
10 times the number of components in the PLSR model.

3. The range of the sampled concentrations is approximately
equal to the range of concentrations likely to occur at the site.

4. Samples were collected during times representative of the
various conditions at the site (e.g., baseflow, rising and fall-
ing limbs of storms, seasonal conditions, nutrient amend-
ment schedules, biological hot moments, see Fig. 2).

As use of in situ optical spectrophotometers increases,
researchers and managers will gain a better picture of their

performance to measure several water quality parameters. In
the foreseeable future, this type of instrumentation may
extend our ability to monitor critical nutrients at times and
places that would be difficult to sample in any other way.
Results presented in this work also indicate that with further
study in a more diverse set of environments, phosphorus frac-
tions may be monitored with increasing reliability to inform
watershed management goals.
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